"paraphrase-mpnet-base-v2"是一个用于智能问答系统的模型,主要基于Milvus这一高效的向量数据库。Milvus是一个开源的、分布式的、高性能的向量相似度搜索引擎,它能够处理大规模的非结构化数据,如文本、图像、音频等,尤其适合在问答系统中进行语义理解与匹配。 该模型的核心是MPNet(Multi-Head Projection Network),这是一种预训练的Transformer模型,由微软研究团队提出。MPNet在BERT模型的基础上进行了改进,通过引入自投影机制,更好地处理了输入序列中的上下文关系,特别是在处理对齐问题和句子平行性时表现出色。这使得MPNet在句法和语义理解方面具有更强的能力,对于问答系统而言,这意味着它可以更准确地理解用户的问题,并找到最相关的答案。 "config.json"文件通常包含了模型的配置信息,比如模型的参数设置、优化器的选择、学习率策略、训练步数等,这些都是运行模型所必需的。在部署或微调模型时,我们需要根据实际需求调整这些配置。 "modules.json"可能是模型的架构定义文件,它详细描述了模型的各个层及其连接方式。这有助于我们理解模型的工作原理,也可以方便地在其他项目中复用或修改模型。 "similarity_evaluation_sts-dev_results.csv"可能包含了模型在相似度评估任务上的表现数据,比如在STS-B(Semantic Textual Similarity Benchmark)数据集上的结果。STS-B是一个用于评估句子相似度的标准基准,包含一对对的句子和它们的人工标注的相似度分数。模型的性能可以通过这些结果来评估,通常会关注Pearson和Spearman相关系数等指标。 "1_Pooling"和"0_Transformer"这两个文件名可能是模型的分块或者层的表示。在深度学习模型中,"Pooling"通常指的是池化操作,用于减少数据的空间维度,提取关键特征;而"Transformer"则是Transformer模型的核心部分,负责处理输入序列并生成表示。在MPNet中,Transformer层负责捕捉语言的长期依赖关系,而Pool层则可能用来生成固定长度的句子向量,用于后续的相似度计算。 "paraphrase-mpnet-base-v2"是构建在Milvus上的智能问答模型,利用MPNet的强大预训练能力进行语义理解,结合配置文件、架构文件以及评估结果,可以实现高效、准确的问答服务。
2025-06-12 16:52:31 386.29MB Milvus 智能问答
1
随着人工智能技术的快速发展,问答系统作为人机交互的重要组成部分,受到了广泛的关注。LLM智能问答系统即是其中的一项创新应用,它依托于阿里云提供的强大计算资源和天池比赛这一竞赛平台,吸引了一大批数据科学家和工程师参与。通过深度学习和自然语言处理技术,LLM智能问答系统致力于提升问答的准确性和效率。 在这个系统的学习赛中,参赛者需要对给定的问题进行准确的理解和分类,并生成相应的SQL语句,最后生成基于SQL查询结果的答案。通过这种方式,该系统不仅能够处理自然语言文本,还能深入理解语义,并执行一定的数据库查询操作,展现出强大的问题解决能力。 在开发过程中,开发者采用了一系列的技术手段和策略。比如,C00_text_understanding_v2.py和text_understanding.py文件涉及到了文本理解和向量化的技术,通过对文本进行向量化处理,将自然语言转化为计算机能够理解的形式。A01_question_classify.py和A02_question_to_entity.py文件则分别实现了问题的分类和问题实体的识别,这对于后续问题的处理和答案的生成具有重要意义。 在SQL语句的生成和应用方面,B01_generate_SQL_v2.py和B02_apply_SQL_v2.py文件是核心组件,它们负责根据问题内容生成SQL查询语句,并执行这些语句以获取所需的数据。紧接着,B03_Generate_answer_for_SQL_Q.py文件则根据查询结果生成最终的答案,这个过程涉及到了复杂的逻辑判断和自然语言生成技术。 此外,ai_loader.py文件可能是用于加载必要的数据集或者预训练模型,为整个问答系统提供数据支撑。而Readme.pdf文件则提供了整个项目的说明文档,包括但不限于安装指南、使用说明、项目结构、以及可能存在的版权和许可信息。 整体来看,基于LLM智能问答系统的开发涉及到了自然语言处理、深度学习、数据库查询等多个领域的知识。开发者需要熟悉这些领域并能够将它们综合应用到实际问题中去。通过在阿里云的天池比赛中的实战演练,参赛者能够不断优化和改进他们的问答系统,使其在理解和生成答案方面具有更强大的能力。 该问答系统的开发和优化是一个多学科交叉的过程,它不仅需要深入的理论知识,还需要丰富的实践经验。通过对LLM智能问答系统的学习和竞赛实践,参与者能够加深对智能问答系统设计与实现的理解,并为未来在人工智能领域的深入研究和应用开发打下坚实的基础。
2025-05-10 00:24:14 476KB 阿里云
1
基于大语言模型和 RAG 的知识库问答系统.zip
2025-01-17 13:26:43 31.9MB 人工智能 问答系统
1
人工智能-项目实践-问答系统-Emotional First Aid Dataset, 心理咨询问答、聊天机器人语料库 心理咨询问答语料库(以下也称为“数据集”,“语料库”)是为应用人工智能技术于心理咨询领域制作的语料。据我们所知,这是心理咨询领域首个开放的 QA 语料库,包括 20,000 条心理咨询数据,也是迄今公开的最大的中文心理咨询对话语料(发稿日期 2022-04-07)。数据集内容丰富,不但具备多轮对话内容,也有分类等信息,制作过程耗费大量时间和精力,比如标注过程是面向多轮对话,平均每条标记耗时超过 1 分钟。
小狐狸GPT付费体验系统是一款基于ThinkPHP框架开发的AI问答小程序,是基于国外很火的ChatGPT进行开发的Ai智能问答小程序。 当前全民热议ChatGPT,流量超级大,引流不要太简单!一键下单即可拥有自己的GPT!无限多开、免费更新不限时,完全开源! 主要功能: 1、已对接流量主 2、转发领次数 3、看广告领次数 4、包月套餐 5、关键词过滤功能 6、多开版 搭建教程 1、在宝塔新建个站点,php版本使用7.2 、 7.3 或 7.4,上传到站点根目录,运行目录设置为/public 2、导入数据库文件,数据库文件是 /db.sql 3、修改数据库连接配置,配置文件是/.env 4、正式使用时,请把调试模式关闭:/.env文件第一行,true改成false 5、超管后台地址:http://域名/super 初始账号密码:super 123456 及时修改 PS:先把WEB端配置正常,H5和小程序自然会正常,公众号接口、授权域名、IP白名单三处关键配置
2024-06-18 19:05:27 94B
1
基于neo4j+python开发的心理疾病咨询知识图谱智能问答系统,实现了前后端的开发设计。 知识图谱包含disease、alternate_name、pathogenic_site、department、symptom 、check、susceptible_crowd等实体类型和disease_alternate_nam、disease_pathogenic_site 、disease_symptom、disease_check、disease_department、disease_complication、disease_confusable、disease_crowd等关系类型,共7类1462个实体和3927条关系,实现针对心理疾病咨询的智能问答。
2024-05-13 11:53:15 22.96MB 知识图谱 智能问答
1
可直接参考当毕设项目。有完整的内容
2024-04-11 22:13:49 12.44MB java
1
政务AI机器人智能问答数据集。用于训练政务机器人参考。 政务AI机器人智能问答数据集。用于训练政务机器人参考。 政务AI机器人智能问答数据集。用于训练政务机器人参考。 政务AI机器人智能问答数据集。用于训练政务机器人参考。 政务AI机器人智能问答数据集。用于训练政务机器人参考。
2024-03-27 15:43:28 474KB 人工智能 数据集
1
本源码和数据是我的专栏《模型从入门到实战》中AI智能问答系统的配套资料,专栏地址是:https://blog.csdn.net/asd343442/article/details/135863785,应粉丝要求,上传源码。
2024-03-27 10:37:09 79.93MB 人工智能
1
图一就是Transformer模型的框架,不过这里的encoder和decoder不再是RNN结构,拆开来看,细节如图二:原始论文里,作者设置了6层encoder与6层decoder结构。至于为什么是6,这就是一个超参数而已,可以根据实际情况设置为其他值。从图二中可以看到,计算流程是:输入的句子经过逐层编码后,最上层的encoder会输出中间结果,这个中间结果在每一层decoder中都会用到。同时decoder的计算也是从下往上进行,直到最后输出预测结果。这里省略的是最下层decoder的输入:如果是训练过程,输入则是真实的目标句子;如果是预测过程,第一个输入开始标识符,预测下一个词,并且把这
2023-12-07 08:45:25 924KB
1