这是我本科的毕业论文,后来获校优秀论文证书,而这个证书大大的帮助了我研究生复试。分享出来,希望对大家有用。 摘要 在众多的UNIX系统中,Solaris一直以其强大的功能和健壮的稳定性深受企业用户的青睐。2005年,Sun公司公开了全部的Solaris内核源码,并提出极富挑战性的OpenSolaris项目。同时,Solaris还提供两款强大的内核跟踪工具:DTrace和MDB。 而随着现代操作系统的发展,虚拟内存技术融合了多种先进的技术,逐渐成为操作系统的核心。因此,设计并实现基于Solaris的虚拟内存实验,不仅对研究者,更是对未来的学习者,都将是一个充满挑战性、又极富创造性,既有很强的研究价值,又有重要的现实意义的课题。 本文创造性把DTrace和MDB工具的使用和对内核的跟踪查看结合在一起,把对内核的学习研究和实验的设计实现结合在一起,层层深入的设计和实现了虚拟内存的组织结构和实现、物理内存与虚拟内存的映射、页故障处理的机制与策略以及内存性能瓶颈分析四个实验,并在每个实验中从不同的角度设计并实现了多个方案。 通过这些实验,对Solaris虚拟内存技术做了一个较为全面而深入的研究与总结,从而细化、也深化了对操作系统原理本身的理解。 关键词:操作系统实验;虚拟内存;Solaris;DTrace;MDB 如果遇到任何问题,或者想转载,可以到我的主页留言:http://blog.sina.com.cn/gusui ,或者直接给我来邮件:ouyangj0@gmail.com 谢谢:)
1
点云分割是三维计算机视觉和地理信息系统中的关键技术之一,它涉及到对三维空间中散乱的点集进行分类和解析,以便提取有用的信息。在给定的压缩包文件中,我们聚焦于一个特定的应用场景——道路场景,其中包括路面、路灯、行道树和绿化带等元素。这些元素的精确识别对于自动驾驶、智慧城市管理和交通规划等领域至关重要。 区域生长算法是点云分割常用的一种方法,它的基本思想是从一个或多个种子点出发,按照预设的相似性准则将相邻的点逐步合并,形成连续的区域。在道路场景点云分割中,这个准则可能包括点的位置、颜色、法线方向等特征。以下是关于区域生长点云分割的一些关键知识点: 1. **种子点选择**:选择合适的种子点是区域生长的第一步。通常,种子点可以通过手动选取或者根据先验知识自动选取,比如在点云中寻找明显特征的点,如路面的平坦部分。 2. **相似性准则**:设定合适的相似性条件是决定分割质量的关键。这可以是基于欧氏距离的颜色、法向量或深度差异阈值,也可以是更复杂的统计特性,如灰度共生矩阵。 3. **邻域搜索**:在确定了种子点和相似性准则后,算法会检查每个点的邻域,将满足条件的点添加到当前区域。邻域可以是固定半径的球体,也可以是根据点密度动态调整的结构元素。 4. **迭代与停止条件**:区域生长过程将持续到所有点被分配到某一区域,或者达到预设的最大迭代次数,或者不再有新的点满足生长条件。 5. **后处理**:分割完成后,可能会进行一些后处理步骤,例如噪声去除、边界平滑、连通组件分析等,以提高分割结果的准确性和稳定性。 在道路场景中,点云分割的具体应用可能包括: - **路面检测**:识别出平整的路面区域,这对于自动驾驶车辆的路径规划和定位至关重要。 - **路灯定位**:定位路灯可以为夜间驾驶提供安全保障,同时也有助于城市设施的管理和维护。 - **行道树识别**:识别行道树有助于评估树木健康状况,预防可能对道路安全的威胁,并辅助城市绿化规划。 - **绿化带分析**:分析绿化带的分布和生长状态,可为城市环境改善提供数据支持。 在实际操作中,为了实现高效的点云处理,往往需要结合其他技术,如滤波、聚类、特征提取等。同时,深度学习方法近年来也逐渐应用于点云分割,通过训练神经网络模型,能够自动学习特征并进行精细化分割。但无论采用何种方法,理解并掌握区域生长的基本原理和实践技巧,对于理解和优化点云分割流程都具有重要意义。
2025-06-23 19:17:16 16.41MB
1
各类工况名称:IM240\UDDS\FTPCOL\HWY\NYYCC\US06SC03\HUDDS\LA92\LA92S\NEDC\ECECOL\EUDC\EUDCL\JPN10\JPN15\J1015\WLTP 为了进行汽车的性能分析与优化,构建高效准确的工况实验数据表至关重要。工况数据表提供了各种行驶条件下的参考数据,这些数据不仅是进行仿真分析的基础,也是实验数据对比与评估的重要依据。此外,在采用深度学习和机器学习技术进行车辆性能预测与决策系统开发时,工况数据表扮演着训练集的角色,为算法提供必要的学习样本。在这其中,车辆在各种预设工况下的表现会直接影响到数据分析和模型训练的准确性与可靠性。 具体而言,实验工况包含了多种不同的驾驶模式,每种模式都有其特定的用途与特点。例如,UDDS(Urban Dynamometer Driving Schedule)是一种模拟城市驾驶的循环工况,广泛用于美国;而NEDC(New European Driving Cycle)则是欧洲更为常用的测试工况。FTPCOL可能指美国EPA提出的FTP测试循环的某些变体或升级版,用于测试更接近真实情况的驾驶循环。ECE和EUDC则对应欧洲经济委员会和欧洲统一驾驶循环测试。LA92是针对洛杉矶特定道路状况设计的工况,而WLTP(Worldwide Harmonized Light Vehicles Test Procedure)是一种全球统一的轻型车辆测试程序,用于取代现有的NEDC和EUDC测试,以更好地模拟车辆在各种道路条件下的表现。 深入理解和利用这些工况数据对于汽车制造商和研究人员具有极高的价值。在仿真测试阶段,可以模拟车辆在特定工况下的能耗和排放情况,为优化车辆设计、提高能源效率和减少环境影响提供指导。在机器学习和深度学习的训练中,真实准确的工况数据能够帮助算法模型更好地理解车辆在实际驾驶中的表现,进而在自动控制、故障预测、维护计划等方面发挥巨大作用。 另外,这些工况数据也便于不同车辆或不同技术之间的性能比较。在竞争激烈的市场中,制造商可以利用这些数据来展示其技术的优越性或进行持续改进。同样地,监管机构可以利用这些工况数据对车辆进行标准化测试,确保它们符合最新的排放和安全标准。 车辆各类工况的实验参考数据表是汽车性能分析和机器学习训练不可或缺的基础资源。通过对这些数据的深入分析和利用,可以帮助相关领域内的专家和工程师更精准地设计、测试和优化车辆,从而推动汽车行业的技术进步和环境可持续性发展。
1
介子的光子跃迁形状因子FÏα(Q2)的低能和高能行为分别对介子波函数的横向和纵向分布敏感。 因此,对FÏα(Q2)的仔细研究应为介子波函数的性质提供有用的约束。 在本文中,我们提出对CELLO,CLEO,BABAR和BELLE合作报告的FÏQ(Q2)数据的组合分析。 通过使用最小二乘法进行。 通过使用BELLE和CLEO合作的组合的测量,可以将介子波函数的纵向和横向行为固定到一定程度,即,我们可以得到β[0.691,0.757] GeV和Bβ[0.00,0.235] 对于Pχ2≥90%,其中β和B是方便的介子波函数模型的两个参数。 注意,如文献中所建议的那样,在适当选择参数的情况下,这种介子波函数的分布幅度可以模仿各种纵向行为。 我们观察到CELLO,CLEO和BELLE数据彼此一致,它们都喜欢渐近式分布幅度。 而BABAR数据则倾向于更宽的分布幅度,例如CZ型。
2024-07-05 16:18:06 953KB Open Access
1
数据分析 数据预处理 电影总票房 年份分析 时间序列分析 rating metascore 折线图 Python爬虫 beautiful soup jupyter notebook numpy pandas matplotlib 数据分析 数据挖掘
2024-06-21 20:22:53 6.08MB 数据分析 python 可视化 爬虫
1
其中包含了玩站恶搞实验报告,以及详细的实验数据,值得借鉴参考学习。
2024-06-03 22:37:00 1.28MB 实验数据
1
GA-BP VS BP-遗传算法在哪优化了BP神经网络?附实验数据和代码
2024-05-21 16:31:41 16KB 神经网络 遗传算法
1
该程序使用已知的 Kramer-Kronig 关系从实验测量的电吸收数据计算电折射光谱。 测量数据以 *.txt 格式调用到代码中,数据范围在 m 文件中以非常简单的方式进行操作。
2024-05-21 14:30:38 2KB matlab
1
1.数据清洗 2.聚类 3.逻辑回归 4.PCA降维 5.SVM支持向量机 这份压缩包涵盖了多个数据科学和机器学习领域的关键工具和技术,为数据分析和建模提供了强大的支持。在这个信息的宇宙中,我们可以发现一系列的宝藏,包括数据清洗的魔法、聚类的智慧、逻辑回归的推理、PCA降维的神秘和SVM支持向量机的力量。 首先,数据清洗是这份宝藏中的第一个星辰。它是数据科学的入口,通过神奇的数据处理手段,可以发掘、纠正和去除数据中的不准确、不完整或无效的信息。在这个压缩包中,数据清洗的魔法涵盖了各种情况,如处理缺失值、消除重复记录、格式规范化等。这个工具让数据焕发新生,为后续的分析和建模创造了纯净的舞台。 其次,聚类是这份宝藏的璀璨明珠。在这个信息宇宙中,聚类技术能够将数据分组,找到其中的潜在模式和相似性。它是数据中的探险者,帮助我们在海量信息中发现隐藏的结构和规律。在压缩包中,聚类技术为我们提供了一把探索数据空间的钥匙,使我们能够更好地理解数据的本质。 第三颗星星是逻辑回归的推理之星。在这个宇宙中,逻辑回归是一种强大的预测工具,通过对已知数据进行分析,预测未知数据的可能性。这个工具为我们揭示了
2024-05-14 09:42:36 1.03MB 机器学习 聚类
1
地理信息系统空间分析教程实验数据(汤国安老师第二版),应该是全的,我做了几个实验,书上的步骤很详细,想着把实验都做了,自己写个实验报告。
2023-12-12 12:15:55 375.77MB GIS
1