本研究深入探讨了猫狗图像分类任务,在模型训练与评估过程中,针对 AlexNet、VGG16 和 ResNet18 三种经典模型进行了全面对比。结果表明,VGG16 表现最佳,ResNet18也具有较好的性能,而 AlexNet 则存在一定的过拟合问题。 研究涵盖了多个方面的工作。数据处理上,我们选择了猫狗图像数据集,并进行了归一化、数据增强与标准化等预处理。模型构建与训练过程中,分别采用了三种经典神经网络架构,每种模型在结构和技术上各具特点。训练时,我们使用了交叉熵损失函数、Adam 优化器以及学习率衰减策略。模型评估与优化阶段,结合多种评估指标与曲线,针对过拟合问题采用了正则化技术,针对欠拟合调整了模型架构和参数,同时通过改进数据增强技术提升了模型的鲁棒性与泛化能力。
2025-06-24 18:34:34 375KB 深度学习 Python 猫狗识别 课程设计
1
基于深度学习的图像识别:猫狗识别 一、项目背景与介绍 图像识别是人工智能(AI)领域的一项关键技术,其核心目标是让计算机具备像人类一样“看”和“理解”图像的能力。借助深度学习、卷积神经网络(CNN)等先进算法,图像识别技术实现了从图像信息的获取到理解的全面提升。近年来,这一技术已在医疗、交通、安防、工业生产等多个领域取得了颠覆性突破,不仅显著提升了社会生产效率,还深刻改变了人们的生活方式。猫狗识别的实际应用场景 该模型由两层卷积层和两层全连接层组成,主要用于图像分类任务。 第一层卷积层: 将输入的224×224×3图像通过3×3卷积核映射为112×112×16的特征图。 第二层卷积层: 将特征图进一步转换为 56×56×32。 池化层: 每层卷积后均接一个2×2的最大池化层,用于减少特征图的空间维度。 全连接层:第一层全连接层将向量映射。 第二层全连接层输出对应类别的概率分布(由 num_classes 决定)。 激活函数:使用ReLU作为激活函数。该模型具备较低的参数量,适用于轻量级图像分类任务。
2025-06-09 12:24:39 416KB 实验报告 深度学习 python
1
猫狗识别数据集 训练集有12500张猫图片和12500张狗图片 测试集猫狗一共12500张图片
2023-12-21 23:32:12 820.04MB 数据集
1
先安装环境 ----> 使用data_classify.py文件进行训练集与测试集分割 ----> 在进行训练即可 数据准备:当前数据存放 data_name 文件夹内 文件夹名就是类别名,n个类别就是n个文件夹 目录主要结构组成: model_AlexNet.py ----> 自己建的AlexNet模型(可选其他模型) model_Vgg16.py ----> pytorch自带更改的模型(可选其他模型) train.py ----> 用于训练模型 test.py ----> 用于测试模型 辅助文件: data_classify.py ----> 将 data_name内的类别分为训练集与测试集。 ​ 注意查看代码内容,包含argparse模块 清除单通道图像 -----> 数据清洗,处理异常图像 旧版数据加载 -----> 用于学习图像 数据加载
1
基于深度学习的猫狗识别算法,准确率99%
2022-12-16 11:25:48 33KB 深度学习 猫狗识别 resnet
看我如何基于卷积神经网络的猫狗识别系统的设计与实现.docx看我如何基于卷积神经网络的猫狗识别系统的设计与实现.docx看我如何基于卷积神经网络的猫狗识别系统的设计与实现.docx
1
基于卷积神经网络 Resnet-50 的猫狗识别系统的设计与实现.pdf基于卷积神经网络 Resnet-50 的猫狗识别系统的设计与实现.pdf基于卷积神经网络 Resnet-50 的猫狗识别系统的设计与实现.pdf
2022-10-19 11:05:30 349KB 基于卷积神经网络Resnet-
1
通过TensorFlow搭建卷积神经网络实现猫狗识别代码,训练和测试代码完整,下载之后可以直接运行测试打码,运行环境在Linux下,需要把代码中的路径修改为本机实际路径
2022-10-15 17:06:26 20MB 图像识别
1
使用tensorflow2.3-keras卷积神经网络CNN实现猫狗识别-迁移学习源码案例+数据集+注释+离线模型
2022-07-29 17:05:52 216.31MB tensorflow 深度学习 CNN 迁移学习
1
基于tensorflow的猫狗识别分类算法
2022-07-08 11:10:13 200KB python
1