在IT领域,Delphi是一种基于Object Pascal编程语言的集成开发环境(IDE),广泛用于创建桌面应用程序。本项目是一个使用Delphi编写的源码,功能是实现.bat批处理文件的批量加密与解密。这个工具对于保护敏感的批处理脚本内容,防止未经授权的访问和执行具有重要意义。 我们要理解Delphi文件读写操作。在Delphi中,我们可以使用TFile和TFileStream类来读取和写入文件。TFile类提供了简单的文件操作,如读取、写入、复制和移动文件,而TFileStream则允许我们对文件进行更复杂的流式操作。在.bat文件加密解密过程中,可能需要使用TFileStream来读取文件内容,然后进行加密或解密处理。 .bat文件批量加密涉及到的是对批处理脚本内容的保护。在Delphi程序中,这通常通过读取.bat文件的文本内容,然后使用某种加密算法(如AES、DES或RSA)对文本进行加密。加密后的数据会被保存到新的文件中,原.bat文件则被删除或替换。解密过程则是逆向操作,从加密后的文件中读取数据,用相同的密钥进行解密,并将原始的.bat文件内容恢复。 拖放打开文件功能是Delphi中的一个便捷特性,它允许用户通过简单地将文件从文件管理器拖放到应用程序窗口上来选择文件。实现这一功能,可以使用Delphi的OnDropFiles事件,当用户释放鼠标时,这个事件会被触发,从而获取到被拖放的文件列表。在.bat文件加密解密器中,这一功能可以让用户轻松地选择需要处理的多个.bat文件。 在标签中提到的"bat文件加密"是一个关键的安全措施,特别是在处理包含重要命令或者敏感信息的批处理脚本时。加密过程通常包括选择合适的加密算法,生成随机密钥,然后使用该密钥对文件内容进行加密。加密后的文件对于未授权的用户来说是不可读的,只有拥有正确密钥的人才能解密并执行。 "delphi 文件处理"则涵盖了对文件的各种操作,包括读取、写入、创建、删除等。在批量加密解密的场景下,文件处理技术不仅限于读取和写入,还可能涉及到文件的复制、重命名和备份,以确保在操作出错时能恢复原始文件。 这个Delphi源码项目展示了如何利用Delphi的文件操作功能和加密算法来实现.bat文件的安全管理。开发者可以借此学习到文件I/O、事件处理以及加密解密策略的应用,这对于提升Delphi编程技能和理解安全编程原则都是非常有价值的。通过阅读和理解这个源码,可以加深对Delphi编程和文件安全处理的理解,同时也可以为自己的项目提供一个实用的参考模板。
2025-06-16 01:49:36 16KB bat文件加密 delphi 文件处理
1
内容概要:本文介绍了基于Abaqus软件的轮轨瞬态滚动显式动力学分析模型,重点探讨了簧上质量-全轮对-轨道系统的精细化建模方法。文中详细描述了模型的关键参数设置,包括材料属性、几何尺寸和约束与接触关系。此外,还讨论了计算区域的网格细化技术,以提高计算精度和模拟效果。最后提供了详细的Inp文件,便于用户在Abaqus中快速建立模型并进行计算。 适合人群:从事轨道交通工程设计、仿真分析的研究人员和技术人员,尤其是熟悉Abaqus软件的用户。 使用场景及目标:适用于需要精确模拟轮轨瞬态动力学特性的场合,如轨道交通车辆的设计、性能优化和故障诊断。通过该模型,可以更好地理解和预测轮轨系统在不同工况下的动态行为,从而为设计和维护提供科学依据。 其他说明:随着计算机技术和有限元分析软件的发展,该模型有望在未来得到进一步优化,提升计算效率和应用范围,助力轨道交通行业的可持续发展。
2025-06-01 18:05:18 1.42MB
1
Python的Pandas库是数据分析和处理的强大工具,尤其在处理时间序列数据时,它提供了丰富的功能和高效的操作。本文将通过实例详细介绍如何使用Pandas处理时间序列文件。 我们导入必要的库,包括Pandas(用于数据处理)、NumPy(用于数值计算)和Matplotlib(用于数据可视化): ```python import pandas as pd from numpy import * import matplotlib.pylab as plt ``` 在处理大型数据集时,通常会采用分块读取数据的方式,以减少内存占用。`read`函数展示了如何分块读取CSV文件并处理时间序列数据: ```python def read(filename): dat = pd.read_csv(filename, iterator=True) chunkSize = 1000000 R = [] loop = True while loop: try: data = dat.get_chunk(chunkSize) data = data.loc[:, 'B': 'C'] # 切片 data = data[data.B == 855] # 条件选择 data['C'] = pd.to_datetime(data['C']) # 转换成时间格式 data = data.set_index(['C']) # 设置索引 data.loc[:, 'D'] = array([1] * len(data)) # 增加一列 data = data.resample('D').sum() # 按天求和 data = data.loc[:, 'D'] # 截取 data.fillna(0) # 填充缺失值 R.append(data) except StopIteration: loop = False print("Iteration is stopped.") R.to_csv('855_pay.csv') # 保存 ``` 在这个例子中,`pd.read_csv`的`iterator=True`参数使得可以逐块读取文件。`get_chunk(chunkSize)`方法用于获取指定大小的数据块。对数据进行切片、条件筛选、时间格式转换、设置时间索引、添加新列、按天求和、截取结果列以及填充缺失值等操作,都是处理时间序列数据的常见步骤。 `read2`函数则展示了另一种分块读取和合并数据的方式,使用`pd.concat`将所有数据块连接成一个完整的DataFrame: ```python def read2(filename): reader = pd.read_csv(filename, iterator=True) loop = True chunkSize = 100000 chunks = [] while loop: try: chunk = reader.get_chunk(chunkSize) chunks.append(chunk) except StopIteration: loop = False print("Iteration is stopped.") df = pd.concat(chunks, ignore_index=True) return df ``` `read3save`函数结合了读取、处理和保存的步骤,一次性处理整个文件,适用于小到中等规模的数据集: ```python def read3save(filename): dat = pd.read_csv(filename) data = dat.loc[:,'B':'C'] # 切片 data = data[data.B==855] # 条件选择 # ... 其他处理步骤 ... ``` `loadDataSet`和`getShopData`函数在本例中没有涉及时间序列处理,但它们提供了读取其他类型数据文件的方法,如从TSV文件加载数据并将其转换为矩阵格式,以及读取商店信息文本文件。 时间序列分析在金融、物联网、气象学等领域广泛应用,如股票市场分析、设备维护预测和气候模型。Pandas提供了`resample`方法,可以轻松地对数据进行重采样,如按小时、日、月或年聚合。此外,`fillna`方法用于处理缺失值,可以根据需要填充指定值或使用特定策略(如前向填充、后向填充)。 总结来说,Python的Pandas库为时间序列数据处理提供了强大支持,包括数据读取、切片、筛选、格式转换、时间索引设置、重采样、聚合和缺失值处理等功能,这些功能使得在实际数据分析项目中能高效地处理和分析时间序列数据。
2024-11-24 21:20:21 36KB python pandas 时间序列
1
亲测在WIN10成功激活,正常使用,软件体积轻巧,界面操作简单,功能强大! 1 个 PowerISO相当於可抵数个软体: 通常 PC 要有 WinISO 或 UltraISO 之类 映像档制作转档软件, PowerISO 己有它们的功能。 通常 PC 要有 Alcohol 酒精 或 Daemon tools 之类虚拟光驱软件,PowerISO 己有它们的功能。 内建虚拟光驱可以加载映像文件实时运行。最重要的是,压缩的文件可以在不解压的情况下直接使用。 PowerISO 挂载daa映像档所需的虚拟光碟软体。 网路上下载的游戏和大型软件很多都是 daa 格式的映像档(因为其压缩比高, 档相对的小),这些档案用 Daemon tools 是没办法开启的,这时候就需要PowerISO PowerISO支持ISO,BIN,NRG,IMG,MDF,等几乎所有常见的映像档案。 支持右键选单直接将档案或资料夹制作成ISO档,相当方便 它可以将各档组合分割成多片压缩档,可加入密码,解压时组合成一档或 1 folder,如同 WinRAR 同样用法。 因此它也是和 WinRAR 或 Winzip 一般的压缩软件。 也就是说可以省去安装多个软件了。 另外,经测试,用POWERISO转换PS等游戏镜像文件大小会减少,而且转换后的镜像无法进行游戏,对于游戏镜像文件不可用POWERISO,建议用UltraIso。
2024-04-14 19:59:36 9.73MB Alcoho WinISO
1
使用DELHPI的设计与编程来实现与WORD的结合,达到控制的目的。 您不必从文件中读取所有的图像 ? 您可以创建自己的图像。要创建自己的图像,最灵活的方法是用一个 BufferedImage 对象,它是 Image 类的一个子类,它把图像数据存储在一个可以被访问的缓冲区中。它还支持各种存储像素数据的方法:使用或不使用 alpha 通道、不同种类的颜色模型以及颜色组件的各种精确度。ColorModel 类提供一种灵活的方法定义各种颜色模型,以和 BufferedImage 对象一起使用。为了理解颜色模型工作的基本知识,我们将只使用一个缺省的颜色模型,其颜色组件由 RGB 值和一个缓冲类型(存储 8 位的 RGB 颜色值加上一个 alpha 通道)组成。这一缓冲类型由 BufferedImage 类中的常量 TYPE_INT_ARGB 指定,它意味着每个像素要用一个 int 值。每个像素的值是以 8 位字节形式存储一个 alpha 组件加上 RGB 颜色组件。我们可以用给定的宽度和高度创建一个这种类型的 BufferedImage 对象,代码语句如下: int width = 200; int height = 300; BufferedImage image = new BufferedImage(width, height,BufferedImage.TYPE_INT_ARGB); 这段代码创建了一个 BufferedImage 对象,它代表一个 200 像素宽、300 像素高的图像。为了应用这个图像,我们需要有图形上下文,而 BufferedImage 对象的 createGraphics() 方法就返回一个与该图像相关的 Graphics2D 对象: int width = 200; Graphics2D g2D = image.createGraphics(); 使用 g2D 对象的操作会修改 BufferedImage 对象 image 的像素。利用这个对象,您现在完全有能力应用 BufferedImage 对象。您可以绘制形状、图像、GeneralPath 对象或任何别的东西,还可以为图形上下文设置 alpha 组合对象。您同时还拥有 Graphics2D 对象提供的全部仿射变形能力。 如果要从 BufferedImage 对象获取单个像素,可以通过调用它的 getRGB() 方法,并提供该像素的 x,y 坐标作为 int 类型的参数。这个像素会按 TYPE_INT_ARGB 格式以 int 类型返回,它由四个 8 位的值(代表 alpha 值和 RGB 颜色组件)组成一个 32 位字。同时 getRGB() 还有一个重载的版本,它从一部分图像数据中返回一个像素数组。您也可以通过调用 setRGB() 方法来设置单个像素。前两个参数是该像素的坐标值,第三个参数是待设定的值,类型为 int。这个方法也有一个版本可以设置像素数组的值。 至此我们已经完成了像素操作的学习。下面我们要建立一个 applet,它在 Wrox 徽标背景上使 BufferedImage 对象具有动画效果。我们的示例还将演示怎样能让图像局部透明。applet 的基本内容如下所示: import java.awt.*; import java.awt.image.*; import java.awt.geom.*; import javax.swing.*; public class ImageDrawDemo extends JApplet { // The init() method to initialize everything... // The start() method to start the animation... // The stop() method to stop the animation... // The ImagePanel class defining the panel displaying the animation... // Data members for the applet... } 创建一个图像 一个子图形是一个小的图形图像,可以将其绘制在静态图像以创建动画。要创建动画效果,您只要随着时间推移,在不同的位置和方向上绘制子图形。当然,利用坐标系的变形可以使之简化许多。游戏经常使用子图形 ? 由于您只需要在一个静态背景上绘制子图形,所以可以使动画所占用的处理器的时间大大减少。我们对使用 BufferedImage 对象的兴趣意味着我们将不再花费精力去研究减少处理器时间的最佳技术,而是把注意力放在理解怎样才能在一个程序内部创建和使用图像上。 我们的 BufferedImage 对象看上去如图 1 中的图像: 图 1. BufferedImage 子图形 这个图像是一个以 spriteSize 为边长的正方形。图像其它部分的尺寸值都与这个边长相关。实际上这里只有两个几何实体,一条线和一个圆,都在不同位置和方向重复出现。如果我们创建一个 Line2D.Double 对象代表线,创建一个 Ellipse2D.Double 对象代表圆,那么我们就可以通过移动用户坐标系和画这两个对象中的一个或其它的对象而画出整个图像。 如果是按真正面向对象的方法,应该定义一个类代表一个子图形,可能是作为 BufferedImage 的一个子类,但由于我们是在探索使用 BufferedImage 对象的技巧,因此用一个 createSprite() 方法来画出 BufferedImage 对象上的子图形会更适合我们的目的。因为该方法只是我们的 applet 类的一个成员,所以我们将为 applet 添加数据成员以存储任何需要的数据。您可以把我们将使用的数据成员插入到 applet 类中,如下所示: double totalAngle; // Current angular position of sprite double spriteAngle; // Rotation angle of sprite about its center ImagePanel imagePanel; // Panel to display animation BufferedImage sprite; // Stores reference to the sprite int spriteSize = 100; // Diameter of the sprite Ellipse2D.Double circle; // A circle - part of the sprite Line2D.Double line; // A line - part of the sprite // Colors used in sprite Color[] colors = {Color.red , Color.yellow, Color.green , Color.blue, Color.cyan, Color.pink , Color.magenta, Color.orange}; java.util.Timer timer; // Timer for the animation long interval = 50; // Time interval msec between repaints 这些成员的一般用途可以从注释中清楚地看到。下面我们要看一看开发代码时它们是怎样被使用的。 createSprite() 方法需要做的第一件事就是创建 BufferedImage 对象 sprite,然后我们还需要一个 Graphics2D 对象用于在 sprite 图像上绘画。下面就是完成这些操作的代码: BufferedImage createSprite(int spriteSize) { // Create image with RGB and alpha channel BufferedImage sprite = new BufferedImage(spriteSize, spriteSize, BufferedImage.TYPE_INT_ARGB); Graphics2D g2D = sprite.createGraphics(); // Context for buffered image // plus the rest of the method... } sprite 对象的宽和高的值都是 spriteSize,图像的类型为 TYPE_INT_ARGB,就是说每个像素的 alpha 值和颜色组件是以一个单独的 int 值存储的,而颜色是以 8 位的红、绿、蓝组件的形式存储的。这意味着我们的 sprite 图像将占用 40,000 字节,这只是浏览一个网页会占用的内存的很小一部分。而这并不影响网页的下载时间,因为在执行 applet 的时候,这部分内存是在本地机器上被分配的。除了作为网页本身的 HTML 文件的内容外,下载时间还取决于 applet 的 .class 文件的大小,以及在它执行时下载的图像或其它文件。 创建一个透明的背景 在 sprite 图像中,alpha 通道是很重要的,因为我们希望背景能完全透明。在绘画过程中,只有 sprite 对象本身应该是可见的,而不是整个 100×100 的矩形图像。我们可以很容易地实现这一目的,只要开始先使整个 sprite 图像区域透明(即,alpha 值为 0.0f),然后把我们想要画的图形绘制在上面,使之不透明(alpha 值为 1.0f)。以下是使整个图像透明的代码: // Clear image with transparent alpha by drawing a rectangle g2D.setComposite(AlphaComposite.getInstance(AlphaComposite.CLEAR, 0.0f)); Rectangle2D.Double rect = new Rectangle2D.Double(0,0,spriteSize,spriteSize); g2D.fill(rect); 我们首先使用 AlphaComposite 对象按照 CLEAR 规则设置 alpha 合成值,把颜色组件设置为零,又通过设置 alpha 值为 0.0f,使之透明。然后我们填充一个覆盖整个图像区域的矩形。我们不必设置颜色值,因为根据 CLEAR 规则,每个像素的前景和背景色所占成分都是零,所以这两者都不参与像素的生成。但我们仍要填充该矩形,因为这将确定被操作的图像像素。 这里,我们可以稍微了解一下怎样控制图像的质量。 着色微调 对着色操作的许多方面而言,都有一个在质量和速度间选择的问题。着色操作就像大多数事情一样 ? 质量是需要代价的,而这里的代价就是处理时间。所有的着色操作都有缺省设置,其中存在一个选择,缺省设置是特定于平台的,但您可以通过调用用于着色的 Graphics2D 对象的 setRenderingHint() 方法自己选择。虽然只有一些微调,如果您的计算机不支持与您指定的微调相对应的着色操作选项,这些微调就无法生效。 通过添加以下对 createSprite() 方法的调用,可以确保得到由我们的 alpha 合成操作可能生成的最好效果。 BufferedImage createSprite(int spriteSize) { // Create image with RGB and alpha channel BufferedImage sprite = new BufferedImage(spriteSize, spriteSize, BufferedImage.TYPE_INT_ARGB); Graphics2D g2D = sprite.createGraphics(); // Context for buffered image // Set best alpha interpolation quality g2D.setRenderingHint(RenderingHints.KEY_ALPHA_INTERPOLATION, RenderingHints.VALUE_ALPHA_INTERPOLATION_QUALITY); // Clear image with transparent alpha by drawing a rectangle g2D.setComposite(AlphaComposite.getInstance(AlphaComposite.CLEAR, 0.0f)); Rectangle2D.Double rect = new Rectangle2D.Double(0,0,spriteSize,spriteSize); g2D.fill(rect); // plus the rest of the method... } RenderingHints 类定义了多种着色微调,它们存储在一个映射集的 Graphics2D 对象里。setRenderingHint() 方法的参数是一个键以及对应的键值。在我们的代码中,第一个参数是代表 alpha 合成微调的键,第二个参数是该微调的值。该微调的其它可能的值有 VALUE_ALPHA_INTERPOLATION_DEFAULT,代表平台缺省值;以及 VALUE_ALPHA_INTERPOLATION_SPEED,代表追求速度而不是质量。 您还可以为下面的键提供微调: 键 描述 KEY_ANTIALIASING 决定是否使用抗锯齿。当着色有倾斜角度的线时,通常会得到一组阶梯式的像素排列,使这条线看上去不平滑,经常被称为 锯齿状图形。抗锯齿是一种技术,它设置有倾斜角度的线的像素亮度,以使线看起来更平滑。因此,这个微调是用来决定在着色有倾斜角度的线时是否在减少锯齿状图形上花费时间。可能的值有 VALUE_ANTIALIAS_ON, _OFF 或 _DEFAULT。 KEY_COLOR_RENDERING 控制颜色着色的方式。可能的值有 VALUE_COLOR_RENDER_SPEED, _QUALITY 或 _DEFAULT。 KEY_DITHERING 控制如何处理抖动。抖动是用一组有限的颜色合成出一个更大范围的颜色的过程,方法是给相邻像素着色以产生不在该组颜色中的新的颜色幻觉。可能的值有 VALUE_DITHER_ENABLE, _DISABLE 或 _DEFAULT。 KEY_FRACTIONALMETRICS 控制显示文本的质量。可能的值有 VALUE_FRACTIONALMETRICS_ON, _OFF 或 _DEFAULT。 KEY_INTERPOLATION 确定怎样做内插。 在对一个源图像做变形时,变形后的像素很少能够恰好对应目标像素位置。在这种情况下,每个变形后的像素的颜色值不得不由周围的像素决定。 内插就是实现上述过程。有许多可用的技术。可能的值,按处理时间从最多到最少,是 VALUE_INTERPOLATION_BICUBIC, _BILINEAR 或 _NEAREST_NEIGHBOR。 KEY_RENDERING 确定着色技术,在速度和质量之间进行权衡。可能的值有 VALUE_RENDERING_SPEED, _QUALITY 或 _DEFAULT。 KEY_TEXT_ANTIALIASING 确定对文本着色时是否抗锯齿。可能的值有 VALUE_TEXT_ANTIALIASING_ON, _OFF 或 _DEFAULT。
2024-02-29 20:37:53 312KB 文件处理类
1
本软件适合处理日志、sql等可用txt打开的大型文件。 本文件为exe文件,适用于windows xp/7/8/10操作系统,此软件可以处理大型txt。软件打开会稍微慢一些,处理大型txt性能方面比notpad++、EDplus性能更高效,可以处理1GB以上的大型txt文件。
2023-11-30 01:24:03 16.24MB 大内存txt notpad plus editor
1
jsp小区物业管理系统,小区的管理
2023-11-24 15:42:23 3.97MB 文件处理
1
word和PDF文件处理工具
2023-04-10 16:39:31 36.06MB 工具
1
Fork Fork 是平时做 C# 软件的时候,整合各种轮子的一个工具项目,包括并不仅限于:各种常用数据处理方法,文件读写 加密 搜索,系统信息 API 操作,Winform窗口控件等等。 更多功能,不定期更新…… 已添加到 Nuget 的库,可直接在 VS 中搜索安装。 # 模块 DLL Nuget 支持 .NET 版本 1 核心库 Azylee.Core 4.0 2 Json库 Azylee.Jsons - 4.0 2 网络库 Azylee.YeahWeb - 4.0 Azylee.Utils 工具组 目前 Azylee.utils 工具组包含以下部分: Azylee.Core : 核心 Azylee.Json : Json 工具包 Azylee.Update : 更新工具包 Azylee.YeahWeb : 网络通信工具包 Azylee.WinformSkin : Winform 样
2023-03-26 20:17:16 16.63MB C#
1
包装7-zip(p7zip) 特征: 支持所有7个zip格式: 7z , XZ , BZIP2 , GZIP , TAR , ZIP , WIM , AR , ARJ , CAB , CHM , CPIO , CramFS , DMG , EXT , FAT , GPT , HFS , IHEX , ISO , LZH , LZMA , MBR , MSI , NSIS , NTFS , QCOW2 , RAR , RPM , SquashFS , UDF , UEFI , VDI , VHD , VMDK , WIM , XAR和Z 解压缩档案 解压缩任何目录或文件 列出文件和目录 从存档中获取任何文件的内容 删除文件或目录(不是RAR ) 添加文件或目录(不是RAR ) 要求: PHP> = 7.3 允许函数 对于Windows:7-zip> = 7.30( ) 对于Li
2023-03-22 18:11:31 2.7MB p7zip archive archiver 7-zip
1