作者:张海藩 第1章 软件工程学概述1 1.1 软件危机1 1.1.1 软件危机的介绍1 1.1.2 产生软件危机的原因3 1.1.3 消除软件危机的途径4 1.2 软件工程5 1.2.1 软件工程的介绍5 1.2.2 软件工程的基本原理7 1.2.3 软件工程方法学9 1.3 软件生命周期11 1.4 软件过程14 1.4.1 瀑布模型15 1.4.2 快速原型模型16 1.4.3 增量模型17 1.4.4 螺旋模型19 1.4.5 喷泉模型21 1.4.6 Rational统一过程22 1.4.7 敏捷过程与极限编程25 1.4.8 微软过程29 1.5 小结31 习题132 第2章 可行性研究35 2.1 可行性研究的任务35 2.2 可行性研究过程36 2.3 系统流程图38 2.3.1 符号38 2.3.2 例子38 2.3.3 分层40 2.4 数据流图40 软件工程导论目 录 2.4.1 符号40 2.4.2 例子42 2.4.3 命名44 2.4.4 用途45 2.5 数据字典47 2.5.1 数据字典的内容47 2.5.2 定义数据的方法47 2.5.3 数据字典的用途48 2.5.4 数据字典的实现49 2.6 成本/效益分析49 2.6.1 成本估计50 2.6.2 成本/效益分析的方法51 2.7 小结53 习题253 第3章 需求分析55 3.1 需求分析的任务56 3.1.1 确定对系统的综合要求56 3.1.2 分析系统的数据要求57 3.1.3 导出系统的逻辑模型58 3.1.4 修正系统开发计划58 3.2 与用户沟通获取需求的方法58 3.2.1 访谈58 3.2.2 面向数据流自顶向下求精59 3.2.3 简易的应用规格说明技术59 3.2.4 快速建立软件原型61 3.3 分析建模与规格说明62 3.3.1 分析建模62 3.3.2 软件需求规格说明62 3.4 实体-联系图62 3.4.1 数据对象63 3.4.2 属性63 3.4.3 联系63 3.4.4 实体-联系图的符号64 3.5 数据规范化64 3.6 状态转换图65 3.6.1 状态65 3.6.2 事件65 3.6.3 符号66 3.6.4 例子66 3.7 其他图形工具67 3.7.1 层次方框图68 3.7.2 Warnier图68 3.7.3 IPO图69 3.8 验证软件需求70 3.8.1 从哪些方面验证软件需求的正确性70 3.8.2 验证软件需求的方法70 3.8.3 用于需求分析的软件工具71 3.9 小结72 习题373 第4章 形式化说明技术75 4.1 概述75 4.1.1 非形式化方法的缺点75 4.1.2 形式化方法的优点76 4.1.3 应用形式化方法的准则76 4.2 有穷状态机77 4.2.1 概念77 4.2.2 例子79 4.2.3 评价82 4.3 Petri网82 4.3.1 概念82 4.3.2 例子84 4.4 Z语言85 4.4.1 简介85 4.4.2 评价88 4.5 小结88 习题489 第5章 总体设计91 5.1 设计过程91 5.2 设计原理94 5.2.1 模块化94 5.2.2 抽象95 5.2.3 逐步求精95 5.2.4 信息隐藏和局部化96 5.2.5 模块独立97 5.3 启发规则99 5.4 描绘软件结构的图形工具102 5.4.1 层次图和HIPO图102 5.4.2 结构图103 5.5 面向数据流的设计方法104 5.5.1 概念104 5.5.2 变换分析105 5.5.3 事务分析111 5.5.4 设计优化112 5.6 小结113 习题5114 第6章 详细设计117 6.1 结构程序设计117 6.2 人机界面设计119 6.2.1 设计问题119 6.2.2 设计过程121 6.2.3 人机界面设计指南122 6.3 过程设计的工具124 6.3.1 程序流程图124 6.3.2 盒图125 6.3.3 PAD图126 6.3.4 判定表127 6.3.5 判定树128 6.3.6 过程设计语言128 6.4 面向数据结构的设计方法129 6.4.1 Jackson图130 6.4.2 改进的Jackson图131 6.4.3 Jackson方法132 6.5 程序复杂程度的定量度量136 6.5.1 McCabe方法137 6.5.2 Halstead方法139 6.6 小结140 习题6140 第7章 实现145 7.1 编码146 7.1.1 选择程序设计语言146 7.1.2 编码风格147 7.2 软件测试基础149 7.2.1 软件测试的目标150 7.2.2 软件测试准则150 7.2.3 测试方法151 7.2.4 测试步骤151 7.2.5 测试阶段的信息流152 7.3 单元测试153 7.3.1 测试重点153 7.3.2 代码审查154 7.3.3 计算机测试155 7.4 集成测试156 7.4.1 自顶向下集成157 7.4.2 自底向上集成158 7.4.3 不同集成测试策略的比较159 7.4.4 回归测试160 7.5 确认测试160 7.5.1 确认测试的范围160 7.5.2 软件配置复查161 7.5.3 Alpha和Beta测试161 7.6 白盒测试技术162 7.6.1 逻辑覆盖162 7.6.2 控制结构测试165 7.7 黑盒测试技术171 7.7.1 等价划分172 7.7.2 边界值分析175 7.7.3 错误推测175 7.8 调试176 7.8.1 调试过程176 7.8.2 调试途径178 7.9 软件可靠性179 7.9.1 基本概念179 7.9.2 估算平均无故障时间的方法180 7.10 小结182 习题7183 第8章 维护189 8.1 软件维护的定义189 8.2 软件维护的特点190 8.2.1 结构化维护与非结构化维护差别巨大190 8.2.2 维护的代价高昂190 8.2.3 维护的问题很多191 8.3 软件维护过程192 8.4 软件的可维护性194 8.4.1 决定软件可维护性的因素194 8.4.2 文档195 8.4.3 可维护性复审196 8.5 预防性维护197 8.6 软件再工程过程198 8.7 小结200 习题8201 第9章 面向对象方法学引论203 9.1 面向对象方法学概述203 9.1.1 面向对象方法学的要点203 9.1.2 面向对象方法学的优点205 9.2 面向对象的概念209 9.2.1 对象209 9.2.2 其他概念211 9.3 面向对象建模215 9.4 对象模型216 9.4.1 类图的基本符号217 9.4.2 表示关系的符号218 9.5 动态模型223 9.6 功能模型224 9.6.1 用例图224 9.6.2 用例建模227 9.7 3种模型之间的关系228 9.8 小结229 习题9229 第10章 面向对象分析231 10.1 面向对象分析的基本过程231 10.1.1 概述231 10.1.2 3个子模型与5个层次232 10.2 需求陈述233 10.2.1 书写要点233 10.2.2 例子234 10.3 建立对象模型235 10.3.1 确定类与对象236 10.3.2 确定关联238 10.3.3 划分主题241 10.3.4 确定属性241 10.3.5 识别继承关系244 10.3.6 反复修改244 10.4 建立动态模型247 10.4.1 编写脚本247 10.4.2 设想用户界面248 10.4.3 画事件跟踪图249 10.4.4 画状态图250 10.4.5 审查动态模型251 10.5 建立功能模型253 10.5.1 画出基本系统模型图253 10.5.2 画出功能级数据流图254 10.5.3 描述处理框功能254 10.6 定义服务255 10.7 小结256 习题10256 第11章 面向对象设计259 11.1 面向对象设计的准则259 11.2 启发规则261 11.3 软件重用263 11.3.1 概述263 11.3.2 类构件265 11.3.3 软件重用的效益266 11.4 系统分解267 11.5 设计问题域子系统270 11.6 设计人机交互子系统273 11.7 设计任务管理子系统275 11.8 设计数据管理子系统277 11.8.1 选择数据存储管理模式277 11.8.2 设计数据管理子系统278 11.8.3 例子280 11.9 设计类中的服务280 11.9.1 确定类中应有的服务280 11.9.2 设计实现服务的方法281 11.10 设计关联282 11.11 设计优化283 11.11.1 确定优先级283 11.11.2 提高效率的几项技术284 11.11.3 调整继承关系285 11.12 小结287 习题11288 第12章 面向对象实现289 12.1 程序设计语言289 12.1.1 面向对象语言的优点289 12.1.2 面向对象语言的技术特点290 12.1.3 选择面向对象语言294 12.2 程序设计风格294 12.2.1 提高可重用性295 12.2.2 提高可扩充性297 12.2.3 提高健壮性297 12.3 测试策略298 12.3.1 面向对象的单元测试298 12.3.2 面向对象的集成测试299 12.3.3 面向对象的确认测试299 12.4 设计测试用例299 12.4.1 测试类的方法300 12.4.2 集成测试方法301 12.5 小结303 习题12304 第13章 软件项目管理305 13.1 估算软件规模305 13.1.1 代码行技术305 13.1.2 功能点技术306 13.2 工作量估算308 13.2.1 静态单变量模型308 13.2.2 动态多变量模型308 13.2.3 COCOMO2模型309 13.3 进度计划312 13.3.1 估算开发时间312 13.3.2 Gantt图314 13.3.3 工程网络315 13.3.4 估算工程进度316 13.3.5 关键路径318 13.3.6 机动时间318 13.4 人员组织320 13.4.1 民主制程序员组320 13.4.2 主程序员组321 13.4.3 现代程序员组322 13.5 质量保证324 13.5.1 软件质量324 13.5.2 软件质量保证措施326 13.6 软件配置管理328 13.6.1 软件配置329 13.6.2 软件配置管理过程329 13.7 能力成熟度模型331 13.8 小结334 习题13335 附录A C++类库管理系统的分析与设计337 A.1 面向对象分析337 A.1.1 需求337 A.1.2 建立对象模型338 A.2 面向对象设计339 A.2.1 设计类库结构339 A.2.2 设计问题域子系统340 A.2.3 设计人机交互子系统341 A.2.4 设计其他类344 附录B 一个汉字行编辑程序的设计347 B.1 设计规格说明347 B.1.1 外部编辑命令347 B.1.2 编辑命令348 B.1.3 输出信息349 B.2 概要设计350 B.2.1 正文文件350 B.2.2 两个工作模式351 B.2.3 数据元素352 B.2.4 过程353 B.3 概要设计结果353 B.4 详细设计356 B.4.1 数据元素356 B.4.2 控制数据元素357 B.4.3 编辑过程357 B.4.4 输入模式的过程359 B.4.5 编辑模式的过程360 B.5 详细设计结果364 B.5.1 编辑程序的详细结构364 B.5.2 类PASCAL伪码365 B.5.3 实现编辑程序的算法367 ### 重要知识点总结 #### 第1章:软件工程学概述 **1.1 软件危机** - **1.1.1 软件危机的介绍** - 软件危机指的是在计算机软件的开发和维护过程中所遇到的一系列严重问题。 - **1.1.2 产生软件危机的原因** - 主要原因包括需求定义不明确、缺乏有效的管理和控制手段、以及开发过程中缺乏标准化和规范化等。 - **1.1.3 消除软件危机的途径** - 引入软件工程的概念和技术方法,加强项目管理和质量控制,提高开发过程的规范化水平。 **1.2 软件工程** - **1.2.1 软件工程的介绍** - 软件工程是指导计算机软件开发和维护的一门工程学科。 - **1.2.2 软件工程的基本原理** - 包括模块化、抽象、逐步求精等原则。 - **1.2.3 软件工程方法学** - 方法学包括方法、工具和过程三个要素,目的是为了有效地进行软件开发。 **1.3 软件生命周期** - **软件生命周期**由软件定义、软件开发和运行维护三个时期组成,每个时期又细分为不同的阶段。 **1.4 软件过程** - **软件过程**是为获得高质量软件所需完成的一系列任务的框架,定义了完成任务的具体步骤。 **1.4.1 瀑布模型** - 瀑布模型将软件开发过程划分为一系列阶段,每个阶段完成后才能进入下一阶段。 - 优点:强迫开发人员采用规范的方法,确保每个阶段产生的文档得到质量保证小组的验证。 - 缺点:过于理想化,不适应需求变化,灵活性较差。 **1.4.2 快速原型模型** - 通过构建原型系统来收集用户反馈,进而更好地定义需求。 - 适用于需求不明确或需求可能会发生变化的情况。 **1.4.3 增量模型** - 允许分阶段交付软件产品,每次交付一部分功能。 - 优点是可以逐步完善软件,减少用户对新产品的抵触感。 **1.4.4 螺旋模型** - 结合了瀑布模型和快速原型模型的优点,增加了风险管理。 - 特别适合大型软件项目,可以在每个迭代中进行风险评估和应对策略调整。 **1.4.5 喷泉模型** - 针对面向对象开发的模型,强调迭代和无间隙的特性。 - 适用于需求不太清晰但能够逐渐明确的情况。 **1.4.6 Rational统一过程** - 是一种以用例为核心、以架构为中心、迭代增量式的开发过程。 - 强调软件架构的重要性,并且支持软件的持续迭代和增量开发。 **1.4.7 敏捷过程与极限编程** - 敏捷开发注重快速响应变化,强调团队合作和个人互动。 - 极限编程(XP)是敏捷开发的一种具体实践方式,强调频繁的客户反馈和持续的重构。 **1.4.8 微软过程** - 微软公司基于其自身经验总结出来的软件开发过程。 - 包括详细的文档和模板,旨在提高软件质量和开发效率。 #### 第2章:可行性研究 - **可行性研究的任务** - 研究项目的可行性,包括技术、经济、操作和社会政策方面的可行性。 - **系统流程图** - 用来表示系统内部各个组成部分及其之间数据流动的图形表示法。 - **数据流图** - 用于描述系统的逻辑模型,展示数据如何在系统中流动和被处理。 - **数据字典** - 定义数据流图中所有元素的数据集合。 - **成本/效益分析** - 评估项目的经济合理性,计算项目的预期收益与成本之比。 #### 第3章:需求分析 - **需求分析的任务** - 确定对系统的综合要求,分析数据要求,导出系统的逻辑模型,并修正系统开发计划。 - **与用户沟通获取需求的方法** - 包括访谈、面向数据流自顶向下求精、简易的应用规格说明技术和快速建立软件原型等方法。 - **分析建模与规格说明** - 分析建模是创建需求规格说明的基础,而规格说明则是描述需求的形式化表示。 - **实体-联系图** - 用于描述实体之间的关系,包括数据对象、属性和联系等内容。 - **状态转换图** - 描述系统状态及其转换的图形表示法。 - **验证软件需求** - 包括验证需求的正确性和完整性,以及使用软件工具辅助需求分析。 #### 第4章:形式化说明技术 - **形式化方法的优点** - 可以精确地描述系统的规格,有助于发现早期设计中的错误。 - **有穷状态机** - 用于描述系统的有限状态及其转换行为。 - **Petri网** - 一种图形化的建模工具,用于描述并发系统的行为。 - **Z语言** - 一种形式化规格说明语言,用于描述系统的逻辑结构。 #### 第5章:总体设计 - **设计过程** - 总体设计阶段的主要任务是根据需求分析的结果,确定系统的体系结构。 - **设计原理** - 包括模块化、抽象、逐步求精、信息隐藏和局部化、模块独立等原则。 - **启发规则** - 为设计过程提供指导的原则和建议。 - **描绘软件结构的图形工具** - 包括层次图、结构图等工具,用于描述软件结构。 - **面向数据流的设计方法** - 根据数据流的特点进行软件设计,包括变换分析和事务分析等方法。 #### 第6章:详细设计 - **结构程序设计** - 是详细设计阶段的重要内容之一,涉及程序的结构和流程。 - **人机界面设计** - 包括设计过程、设计指南等内容,旨在提高用户界面的可用性。 - **过程设计的工具** - 包括程序流程图、盒图、PAD图、判定表、判定树等工具。 - **面向数据结构的设计方法** - 根据数据结构的特点进行设计,如Jackson方法等。 - **程序复杂程度的定量度量** - 使用McCabe方法和Halstead方法等定量度量程序的复杂性。 #### 第7章:实现 - **编码** - 选择合适的程序设计语言,并遵循良好的编码风格。 - **软件测试基础** - 包括测试目标、准则、方法、步骤等基础知识。 - **单元测试** - 针对程序中的最小可测试单元进行测试。 - **集成测试** - 在单元测试之后进行,测试模块间的接口。 - **确认测试** - 确认软件是否满足需求规格说明的要求。 - **白盒测试技术** - 基于对程序内部结构的理解来进行测试。 - **黑盒测试技术** - 仅考虑程序的功能而不关心程序内部结构。 - **调试** - 定位和修复程序中的错误。 - **软件可靠性** - 包括可靠性概念、平均无故障时间的估算方法等。 #### 第8章:维护 - **软件维护的定义** - 维护是在软件交付使用后,为了改正错误或满足新的需求而进行的修改活动。 - **软件维护的特点** - 包括结构化维护与非结构化维护的差异、维护成本高以及维护过程中存在的问题等。 - **软件维护过程** - 维护过程包括评估需求、实施变更、重新测试等步骤。 - **软件的可维护性** - 可维护性是指软件易于维护的程度。 - **预防性维护** - 为了防止未来可能出现的问题而采取的维护措施。 - **软件再工程过程** - 重新设计和实现已有的软件,以提高其质量和可维护性。 #### 第9章:面向对象方法学引论 - **面向对象方法学概述** - 面向对象方法学以对象为核心,强调封装、继承和多态等概念。 - **面向对象的概念** - 包括对象、类、继承、多态等基本概念。 - **面向对象建模** - 使用类图、对象图等图形工具描述系统的静态结构。 - **动态模型** - 描述系统的动态行为,包括状态图、顺序图等。 - **功能模型** - 通过用例图和场景来描述系统的功能需求。 #### 第10章:面向对象分析 - **面向对象分析的基本过程** - 包括需求陈述、建立对象模型、建立动态模型、建立功能模型等步骤。 - **需求陈述** - 明确系统应该做什么。 - **建立对象模型** - 确定系统中的类和对象,以及它们之间的关系。 - **建立动态模型** - 描述系统的动态行为,如事件序列、状态转换等。 - **建立功能模型** - 描述系统的功能需求,通常使用用例图。 #### 第11章:面向对象设计 - **面向对象设计的准则** - 设计过程中应遵循的一些基本原则。 - **启发规则** - 为设计过程提供指导的规则。 - **软件重用** - 通过复用现有组件来提高开发效率和软件质量。 - **系统分解** - 将系统分解为更小的部分,以便于管理和设计。 - **设计问题域子系统** - 针对系统的核心业务逻辑进行设计。 - **设计人机交互子系统** - 设计用户界面,提高用户体验。 - **设计任务管理子系统** - 设计用于协调系统中任务执行的机制。 - **设计数据管理子系统** - 设计数据存储和访问机制。 #### 第12章:面向对象实现 - **程序设计语言** - 选择面向对象的语言,如Java、C++等。 - **程序设计风格** - 提高代码的可读性、可维护性和可扩展性。 - **测试策略** - 包括单元测试、集成测试和确认测试等。 - **设计测试用例** - 根据设计文档和需求规格说明编写测试案例。 #### 第13章:软件项目管理 - **估算软件规模** - 采用代码行技术或功能点技术等方法。 - **工作量估算** - 使用静态单变量模型、动态多变量模型等技术。 - **进度计划** - 包括估算开发时间、使用Gantt图、工程网络等工具。 - **人员组织** - 不同类型的开发团队组织结构。 - **质量保证** - 确保软件质量的各种措施。 - **软件配置管理** - 包括版本控制、变更管理等。 - **能力成熟度模型** - 用于评估和改进组织的软件开发能力。 #### 附录A:C++类库管理系统的分析与设计 - **面向对象分析** - 包括需求分析、建立对象模型等步骤。 - **面向对象设计** - 设计类库结构、问题域子系统等。 #### 附录B:一个汉字行编辑程序的设计 - **设计规格说明** - 包括外部编辑命令、编辑命令、输出信息等。 - **概要设计** - 包括正文文件、工作模式、数据元素等。 - **详细设计** - 包括数据元素、控制数据元素、编辑过程等。 - **详细设计结果** - 包括编辑程序的详细结构、类PASCAL伪码等。
1
《谭浩强C语言程序设计第三版》是一本广受欢迎的C语言学习教材,由谭浩强先生编著。此书以其深入浅出的讲解方式和丰富的实例,为初学者提供了全面而系统的C语言知识框架。书中涵盖了C语言的基础语法、控制结构、函数、数组、指针、结构体等核心概念,同时注重培养读者的编程思维和实践能力。 在“C语言程序设计”这一领域,谭浩强先生的著作一直享有很高的声誉。第三版在此前的基础上进行了修订和更新,以适应现代编程环境的变化,更贴近当前的教学需求。书中不仅对基本语法进行了详尽的解释,还加入了更多的实用技巧和编程实例,使读者能够更好地理解和应用C语言。 "课后答案"是学习过程中不可或缺的一部分,它可以帮助读者检验自我学习效果,理解并纠正错误。《谭浩强C语言第三版》附带的课后习题答案详细解析了每一道题目,包括解答过程和关键知识点的解释,这对于自学或课堂教学都是非常有价值的辅助材料。例如,第一部分的课后习题答案(一)可能涵盖了变量、数据类型、运算符、流程控制等基础知识的练习题解答,帮助读者巩固所学。 C语言是一种广泛应用的编程语言,它是许多高级编程语言的基础,如Java、Python等。掌握C语言意味着具备底层编程的能力,能理解计算机内存管理、系统调用等深层次概念。C语言程序设计的学习不仅有助于提升编程技能,还能为学习其他高级语言打下坚实基础。 学习《谭浩强C语言程序设计第三版》时,建议读者按照章节顺序逐步学习,先掌握基本语法,然后通过编写实际程序来锻炼编程技能。对于课后习题,不应仅仅满足于查看答案,而应亲自尝试解答,遇到困难时再对照答案,这样可以加深理解,提高解决问题的能力。此外,阅读相关书籍、参与编程论坛讨论以及实践项目开发也是提升C语言技能的有效途径。 《谭浩强C语言程序设计第三版》是C语言初学者的宝贵资源,配合完整的课后习题答案,可以为学习者提供一条清晰的学习路径,帮助他们快速进入C语言的世界,并在未来的职业生涯中受益匪浅。
2025-07-11 23:19:18 17.74MB 程序设计 课后答案
1
软件工程作为一门学科,其核心在于指导计算机软件的开发与维护。它涵盖了一系列的概念、原理、技术和方法,目的是经济高效地开发高质量的软件产品,并确保其在后续使用过程中的有效维护。 软件工程强调软件不仅仅是程序,它还包括了数据和相关文档,构成一个完整的集合。这一概念的明晰有助于理解软件开发不仅仅是编程,编程只是开发过程中的一个阶段。软件的设计相当于建筑设计,设计成果则相当于设计图纸,是整个开发过程中的蓝图。 软件危机是软件工程领域早期面临的一个重大挑战,它表现为成本和进度估计不准确、用户不满意、产品质量不稳定、软件难以维护、缺乏适当文档、成本占比上升以及开发生产率落后于硬件及应用普及的趋势。软件危机的出现,很大程度上归因于软件开发过程的不规范、缺乏经验、用户交流障碍、管理不科学以及评测手段的不足。 软件工程的实施,需要采用工程化的管理理念和技术方法。软件生存周期包括多个阶段:问题定义与可行性研究、需求分析、软件设计、程序编码与单元测试、集成测试与系统测试以及运行维护。每个阶段都有其特定的任务和目标,它们共同构成了软件工程的基本框架。 在软件生存周期的每一个阶段,都有对应的管理技术和方法。例如,在问题定义与可行性研究阶段,需要明确问题定义和可行性;需求分析阶段要准确描述目标系统必须实现的功能;软件设计阶段需要制定设计方案并进行概要设计和详细设计;程序编码与单元测试阶段则要实现设计并进行模块测试;集成测试与系统测试阶段要检查模块组装的正确性和软件对用户需求的满足程度;而运行维护阶段则涉及对软件进行持续的维护工作。 软件生存期模型是指在软件开发过程中采用的一系列步骤和方法,常见的模型包括瀑布模型、快速原型模型、增量模型、螺旋模型、喷泉模型和统一过程。这些模型各有优缺点,适用于不同类型的开发场景。例如,瀑布模型的优点在于规范化的开发流程和质量控制,但其缺点在于对书面规格说明的过度依赖和适应需求变更的能力较弱;快速原型模型则能够更好地满足用户需求,但需要开发人员快速反应。 软件工程是一门涉及广泛领域的学科,它要求我们不仅要有扎实的技术能力,还需具备系统的管理思维。在不断变化的技术和市场环境中,软件工程的原则和技术方法为软件开发与维护提供了可持续发展的路径。
2025-06-24 16:19:27 222KB
1
《微型计算机技术》是计算机科学领域的一门基础课程,由孙德文编著的修订版教材,涵盖了微处理器、计算机组成原理、指令系统、存储系统、输入/输出系统以及总线技术等多个核心主题。这份课后答案对于学习者来说是一份宝贵的参考资料,它可以帮助读者深入理解和掌握教材中的理论知识,并通过解答习题来巩固技能。 我们要理解微型计算机技术的基础概念。微型计算机,顾名思义,是指体积小、可个人使用的计算机,其核心是微处理器。微处理器是计算机的大脑,执行所有的计算和逻辑操作。在孙德文的教材中,可能会详细讲解微处理器的结构,包括运算器、控制器和寄存器等部分。 接着,我们会学习计算机的组成原理,包括CPU、内存(RAM和ROM)、主板、输入设备、输出设备等组件的工作原理。其中,CPU与内存之间的交互是计算机运行的基础,而I/O系统则负责计算机与外部世界的通信。 指令系统是微型计算机技术的另一重要部分,它定义了计算机能理解和执行的一系列基本命令。这些指令包括数据处理指令、控制流指令、输入/输出指令等,理解指令集有助于我们理解计算机如何执行程序。 存储系统涉及主存储器(内存)和辅助存储器(硬盘、固态驱动器等)。内存用于暂时存储正在运行的程序和数据,而辅助存储器则用于长期存储信息。了解它们的工作机制对于优化程序性能至关重要。 输入/输出(I/O)系统是计算机与外部设备交换数据的桥梁。典型的I/O设备包括键盘、鼠标、显示器、打印机等。理解中断、DMA(直接存储器访问)等I/O控制方式,可以提高数据传输效率。 总线技术则是连接计算机各个组件的通信通道,包括数据总线、地址总线和控制总线。理解总线的带宽、总线仲裁等概念,有助于我们分析和设计计算机系统。 在《微型计算机技术》的课后答案中,每个章节的习题解答通常会围绕这些主题展开,涵盖理论分析、计算题和应用题等多种类型,帮助学生将理论知识转化为实践能力。通过这些解答,学习者可以检查自己的理解程度,发现并解决学习中的盲点,从而全面提升对微型计算机技术的理解和应用水平。
2025-06-08 11:22:19 1.34MB 微型计算机技术 修订版答案
1
哈工大工程伦理课程后讨论涉及的内容广泛,主要围绕工程实践中出现的伦理问题展开讨论。它从工程活动的特点入手,分析了为什么工程伦理问题会存在于工程实践中。工程活动的特点包括有意识和有目的的设计、知识与技术上的不完备性、以及工程实践后果的不确定性。这些特点使得工程实践具有探索性和实验性,且其结果往往超出预期,这些都紧密关联着伦理问题。 接着,课程内容探讨了工程伦理与工程师伦理之间的联系与区别。分别从功利论、义务论、契约论和德性论的角度进行分析。功利论强调行为对幸福的贡献,义务论关注行为动机的道德规范,契约论将行为看作是社会协议,而德性论则强调个人品德的培养。尽管四种理论侧重点不同,但都强调了工程伦理与工程师伦理的核心原则,即以人为本、关爱生命、安全可靠、关爱自然和公平正义。 在讨论工程实践中可能出现的伦理问题时,课程内容分析了工程决策、工程实施、企业追求利润等方面可能忽视的伦理考量。例如,怒江水电开发案例中的工程实践问题,以及建设决策中缺乏伦理视角、对社区公众的伦理关怀不足、以及企业过分追求利润导致的伦理缺陷。 课程内容还讨论了如何妥善处理可能遇到的工程伦理问题,以PX项目和博帕尔MIC毒气泄漏事件为案例进行分析。它提出了增加信息公开、听取公众意见、举办座谈会和听证会等措施,以增加公众参与和透明度。同时强调了处理工程与人、社会和自然的关系时,应坚持人道主义、社会公正和人与自然和谐发展的基本原则,并将公众的安全、健康和福祉置于首位。 在探讨工程为何总是伴随风险时,课程内容指出工程风险是由于工程本身的特性,以及导致工程风险的因素包括不确定性、复杂性以及多重利益相关者之间的复杂关系。这些因素都要求工程师在进行工程活动时必须具备较高的伦理意识和价值判断能力。 整个课程内容强调了工程师作为工程活动主体的责任,他们不仅要有专业技术能力,还需要有在利益冲突和道德选择中做出判断的能力。工程师必须能够对工程进行伦理价值的判断,并在实践中将伦理规范转化为自愿和积极的行动。
2025-05-18 16:25:57 223KB 工程伦理 课后答案 期末考试
1
"计算机系统结构张晨曦版课后答案" 本资源摘要信息将对计算机系统结构的基本概念、虚拟机、翻译、计算机系统结构、计算机组成、计算机实现、系统加速比、Amdahl 定律、程序的局部性原理、CPI、测试程序套件、存储程序计算机、系列机、软件兼容、向上(下)兼容、向后(前)兼容、兼容机、模拟、仿真、并行性、时间重叠、资源重复、资源共享、耦合度、紧密耦合系统、松散耦合系统、异构型多处理机系统、同构型多处理机系统等进行详细的解释和分析。 计算机系统结构是指计算机的逻辑设计和物理实现,它是计算机科学的基础。计算机系统结构可以分为多级层次结构,每一层以一种不同的语言为特征。这种层次结构包括微程序机器级、传统机器语言机器级、汇编语言机器级、高级语言机器级、应用语言机器级等。 虚拟机是指用软件实现的机器,可以模拟其他计算机的指令系统。翻译是指将高一级机器上的程序转换为低一级机器上的等效程序,然后在低一级机器上运行,实现程序的功能。 计算机系统结构的逻辑实现是计算机组成,包括物理机器级中的数据流和控制流的组成以及逻辑设计等。计算机实现是计算机组成的物理实现,包括处理机、主存等部件的物理结构、器件的集成度和速度、模块、插件、底板的划分与连接、信号传输、电源、冷卻及整机装配技术等。 系统加速比是对系统中某部分进行改进时,改进后系统性能提高的倍数。Amdahl 定律是指当对一个系统中的某个部件进行改进后,所能获得的整个系统性能的提高,受限于该部件的执行时间占总执行时间的百分比。 程序的局部性原理是指程序执行时所访问的存储器地址不是随机分布的,而是相对地簇聚。CPI是每条指令执行的平均时钟周期数。测试程序套件是由各种不同的真实应用程序构成的一组测试程序,用来测试计算机在各个方面的处理性能。 存储程序计算机是冯诺依曼结构计算机,其基本点是指令驱动。程序预先存放在计算机存储器中,机器一旦启动,就能按照程序指定的逻辑顺序执行这些程序,自动完成由程序所描述的处理工作。 系列机是由同一厂家生产的具有相同系统结构、但具有不同组成和实现的一系列不同型号的计算机。软件兼容是指一个软件可以不经修改或者只需少量修改就可以由一台计算机移植到另一台计算机上运行。 向上(下)兼容是指按某档计算机编制的程序,不加修改就能运行于比它高(低)档的计算机。向后(前)兼容是指按某个时期投入市场的某种型号计算机编制的程序,不加修改地就能运行于在它之后(前)投入市场的计算机。 兼容机是由不同公司厂家生产的具有相同系统结构的计算机。模拟是用软件的方法在一台现有的计算机(称为宿主机)上实现另一台计算机(称为虚拟机)的指令系统。仿真是用一台现有计算机(称为宿主机)上的微程序去解释实现另一台计算机(称为目标机)的指令系统。 并行性是计算机系统在同一时刻或者同一时间间隔内进行多种运算或操作。只要在时间上相互重叠,就存在并行性。它包括同时性与并发性两种含义。时间重叠是指在并行性概念中引入时间因素,让多个处理过程在时间上相互错开,轮流重叠地使用同一套硬件设备的各个部分,以加快硬件周转而赢得速度。 资源重复是指在并行性概念中引入空间因素,以数量取胜。通过重复设置硬件资源,大幅度地提高计算机系统的性能。资源共享是这是一种软件方法,它使多个任务按一定时间顺序轮流使用同一套硬件设备。 耦合度是反映多机系统中各计算机之间物理连接的紧密程度和交互作用能力的强弱。紧密耦合系统是指计算机之间的物理连接的频带较高,一般是通过总线或高速开关互连,可以共享主存。松散耦合系统是指计算机之间的物理连接的频带较低,一般是通过通道或通信线路实现计算机之间的互连,可以共享外存设备(磁盘、磁带等)。 异构型多处理机系统是指由多个不同类型、至少担负不同功能的处理机组成,它们按照作业要求的顺序,利用时间重叠原理,依次对它们的多个任务进行加工,各自完成规定的功能动作。同构型多处理机系统是指由多个同类型或至少担负同等功能的处理机组成,它们同时处理同一作业中能并行执行的多个任务。
2025-05-14 22:51:14 45KB
1
智能控制技术复习考试题课后答案.docx
2025-05-12 15:06:01 9.03MB
1
云计算原理与实践-课后答案-王伟.docx
2025-05-08 20:08:44 36KB
1
数据结构是计算机科学中的核心课程,它探讨了如何有效地存储和组织数据,以便进行高效的计算。殷人昆的《数据结构》是一本广泛使用的教材,它采用面向对象的方法和C++编程语言来阐述数据结构的概念。这本书深入浅出地讲解了数据结构的基本原理和实际应用,同时提供了详细的课后答案,帮助学生理解和掌握所学知识。 一、数据结构的基本概念 数据结构是指在计算机中组织和管理数据的方式,包括数组、链表、栈、队列、树、图等多种类型。这些结构的设计目标是提高算法的效率,通过优化数据访问和操作的方式来提升程序性能。在C++中,数据结构可以使用类和对象的形式进行封装,这使得它们更符合面向对象编程的原则。 二、面向对象方法 面向对象编程(Object-Oriented Programming, OOP)是一种编程范式,它以对象为核心,将数据和操作数据的方法封装在一起。在OOP中,数据结构通常被设计为类,每个类代表一种特定的数据结构,如ArrayList、LinkedList等。类的实例(对象)则代表具体的数据实例。面向对象方法使代码更易于理解和维护,也便于复用和扩展。 三、C++语言特性 C++是C语言的增强版,支持面向对象编程。它提供了类、继承、多态和模板等机制,使得在实现数据结构时更加灵活。例如,C++的模板允许我们创建泛型数据结构,可以处理不同类型的数据。此外,C++的STL(Standard Template Library,标准模板库)提供了一些预定义的数据结构,如vector、list、set和map,以及相应的算法,大大简化了数据结构的使用。 四、殷人昆《数据结构》的内容 殷人昆的书中涵盖了线性结构(如数组、链表、栈和队列)、树形结构(如二叉树、堆和Trie树)、图结构以及查找和排序算法等内容。每章都配有详细的实例和习题,帮助读者掌握理论知识并进行实践。课后答案部分对这些问题进行了详尽解答,有助于读者检验自己的理解程度。 五、学习方法与实践 学习数据结构不仅要理解基本概念,还需要通过编程实践来巩固。使用C++实现各种数据结构可以帮助深化理解,而殷人昆的课后答案则提供了验证自己解决方案的机会。同时,读者还可以尝试解决实际问题,比如在图形算法中应用图数据结构,或在搜索排序中运用树结构,这样可以更好地将理论知识应用于实际场景。 六、进阶学习 掌握基础数据结构后,可以进一步研究高级数据结构,如B树、B+树、Trie树、哈希表等,这些都是数据库和搜索引擎等领域常用的数据结构。此外,学习动态规划、贪心算法和回溯法等算法思想,也是提升解决问题能力的重要途径。 总结,殷人昆的《数据结构》教程结合面向对象方法和C++编程,为学习者提供了全面而深入的数据结构知识。通过阅读、实践和解答课后习题,读者不仅可以掌握基本的数据结构,还能提升编程和问题解决能力。
2025-04-16 20:27:17 13.76MB 数据结构 课后答案
1