文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 你是否渴望高效解决复杂的数学计算、数据分析难题?MATLAB 就是你的得力助手!作为一款强大的技术计算软件,MATLAB 集数值分析、矩阵运算、信号处理等多功能于一身,广泛应用于工程、科学研究等众多领域。 其简洁直观的编程环境,让代码编写如同行云流水。丰富的函数库和工具箱,为你节省大量时间和精力。无论是新手入门,还是资深专家,都能借助 MATLAB 挖掘数据背后的价值,创新科技成果。别再犹豫,拥抱 MATLAB,开启你的科技探索之旅!
2025-07-09 09:19:16 4.08MB matlab
1
PLC:AM522 软件:InoProShop(V1.7.3)SP5 简介: 使用第三方库 非常方便的实现轴控 ;在附件案例中已经打包好所需库和注释,下载后可以直接使用仿真。 注意: 压缩包密码 1234 此案例需搭配PLC才可仿真;
2025-07-09 07:40:56 49.4MB EtherCAT
1
内容概要:本文介绍了利用MATLAB代码实现无人机集群避障、多智能体协同控制以及路径规划的技术细节。主要内容分为三部分:一是四旋翼编队控制,涉及目标分配、全局和局部路径规划;二是多人机模拟,涵盖复杂机制和动态行为建模;三是单机路径规划,采用RRT*算法和B样条曲线优化方法。文中还分享了一些关键技术和实战经验,如虚拟弹簧模型用于保持编队稳定,邻域更新机制确保动态拓扑变化的有效管理,以及B样条拟合实现路径平滑化。 适合人群:从事无人机研究、自动化控制领域的科研人员和技术爱好者。 使用场景及目标:适用于希望深入了解无人机集群控制理论并掌握具体实现方法的研究者。目标是帮助读者理解无人机集群避障、协同控制和路径规划的基本原理及其MATLAB代码实现。 阅读建议:建议读者首先熟悉MATLAB编程环境,然后逐步深入理解各个模块的功能和实现方式。同时,可以通过修改参数来探索不同配置下系统的行为特性,从而积累实践经验。
2025-07-08 23:07:05 1.1MB
1
VREP Coppeliasim与MATLAB联合实现机器人轨迹控制仿真:机械臂墙绘轨迹规划与算法详解,基于V-REP CoppeLiasim和Matlab的机器人轨迹控制仿真:机械臂绘制墙画与轨迹规划算法学习示例,vrep coppeliasim+matlab,机器人轨迹控制仿真,利用matlab读取轨迹并控制机械臂在墙上绘图,里面有轨迹规划的相关算法。 此为学习示例,有详细的代码和说明文档 ,vrep;coppeliasim;matlab;机器人轨迹控制仿真;机械臂绘图;轨迹规划算法;学习示例;代码与文档,利用CoppeliaSim和Matlab仿真机器人墙上绘图的轨迹控制策略
2025-07-08 19:14:32 2.45MB 正则表达式
1
"基于FPGA的车牌识别系统:利用Verilog代码与Matlab仿真实现图像采集与红框标识,支持OV5640摄像头与HDMI显示,达芬奇系列板子兼容,XC7A35TFPGA芯片优化",基于FPGA的车牌识别系统:使用Verilog和Matlab仿真,OV5640图像采集与HDMI显示的红框车牌识别,基于FPGA的车牌识别系统verilog代码,包含verilog仿真代码,matlab仿真 OV5640采集图像,HDMI显示图像,车牌字符显示在车牌左上角,并且把车牌用红框框起。 正点原子达芬奇或者达芬奇pro都可以直接使用,fpga芯片xc7a35tfgg484,其他板子可参考修改。 ,基于FPGA的车牌识别系统;Verilog代码;Matlab仿真;OV5640图像采集;HDMI显示图像;车牌字符显示;红框框起车牌;正点原子达芬奇/达芬奇pro;XC7A35TFPGA芯片。,基于FPGA的达芬奇系列车牌识别系统Verilog代码:图像采集与红框显示
2025-07-08 18:08:40 686KB ajax
1
内容概要:本文详细介绍了基于FPGA的车牌识别系统的Verilog实现方法。系统由OV5640摄像头采集图像并通过HDMI实时显示,同时对车牌进行识别并在画面上叠加红框和识别结果。主要内容涵盖硬件架构设计、图像采集状态机、RGB转HSV的颜色空间转换、边缘检测算法、字符分割与识别以及HDMI显示控制等多个关键技术环节。文中还提供了详细的代码片段和调试技巧,确保系统的稳定性和高效性。 适合人群:具备FPGA开发经验的研发人员,尤其是从事图像处理和嵌入式系统开发的技术人员。 使用场景及目标:适用于需要实时车牌识别的应用场景,如停车场管理、交通监控等。目标是提高车牌识别的准确率和速度,同时降低系统功耗和成本。 其他说明:文中提到的代码已在GitHub上开源,便于开发者参考和进一步优化。此外,文中还提到了一些常见的调试问题及其解决方案,帮助开发者更快地完成项目开发。
2025-07-08 18:08:05 1.03MB FPGA Verilog 图像处理 边缘检测
1
热电联产是一种将热能和电能的生产相结合的技术,它能够显著提高能源利用效率,降低能源消耗和环境污染。热电联产的关键在于科学合理的选址定容,即在特定区域内找到最合适的地点和设备容量,以满足热能和电能的需求,并保持能源供应的稳定性和经济性。 为了实现热电联产的选址定容,采用遗传算法编写Matlab程序是一种有效的方法。遗传算法是一种模拟自然选择和遗传机制的搜索优化算法,它通过不断的迭代,可以从一系列可能的解决方案中选择出最优的方案。在热电联产的背景下,遗传算法可以用来优化热电联产设备的位置和容量配置,从而实现成本最小化和效率最大化。 在考虑热网和电网的潮流计算时,需要准确模拟热能和电能在系统中的流动情况。这涉及到复杂的数学模型和算法,包括电力系统分析、热能流动分析以及热电联产系统的整合优化。通过这种计算,可以确保热电联产系统的可靠运行,保证能源供应的连续性和稳定性。 程序的可靠性是通过多次测试和验证来保障的。一个可靠的程序需要在不同的输入条件下都能给出稳定和正确的结果。对于热电联产选址定容程序而言,这通常意味着需要对多种不同的热负荷和电负荷情况、不同的能源价格、不同的设备性能参数等因素进行模拟和分析。 标签中的“剪枝”一词可能指的是遗传算法中的一个步骤,即在迭代过程中去除那些性能较差的解,类似于在决策树算法中的剪枝过程,以减少搜索空间,提高算法的效率和优化效果。 相关文件名称列表提供了多个与热电联产选址定容相关的文档和资源,这些文件包含对热电联产技术的分析、具体实现的细节、程序代码、技术博客文章以及相关的图片和文本文件。这些资料对于深入理解和掌握热电联产选址定容的理论和实践都具有重要的参考价值。 热电联产选址定容程序的开发和应用是一个高度复杂的工程问题,它需要跨学科的知识和技术,包括热力学、电力工程、计算机科学以及优化算法等。通过采用遗传算法等先进的优化技术,结合精确的潮流计算模型,可以有效地解决热电联产选址定容中的各种问题,为实现高效、节能、环保的能源利用提供强有力的支撑。
2025-07-08 14:46:54 395KB
1
摘 要:先分析了8PSK 的软解调原理,针对的对数似然比(LLR)运算复杂度较高的特点,选用了相对简化的值(MAX)算法作为可编程逻辑门阵列(FGPA)硬件平台实现方案。随后,通过QUARTUS II 仿真平台对8PSK 软解调器进行了硬件描述语言(VHDL)的设计实现和功能仿真,并通过与LDPC 译码模块级联在Altera 公司的Stratix II 系列FPGA 芯片上完成终测试。通过与MATLAB 仿真结果进行比较,验证上述简化8PSK 软解调器设计的正确性和可行性。   0 引言   随着卫星通信服务业的发展,人们对服务质量的要求越来越高。2003 年,卫星数字视频广播(DVB-S
2025-07-08 11:39:19 360KB
1
在前端大模型的开发与应用中,以Transformers.js为基础实现浏览器内的RAG模型成为了新的研究热点。RAG,全称为Retrieval-Augmented Generation,即检索增强生成,是将检索式技术和生成式模型相结合的前沿技术,特别适合处理大量信息和提供精准搜索的场景。在本系列文章中,我们将从入门层次介绍如何利用Transformers.js库来构建和实现浏览器内的RAG模型。 我们得了解Transformers.js是 무엇,它是由Hugging Face团队提供的一个开源JavaScript库,其设计初衷是让开发者能在浏览器或Node.js环境中轻松运行预训练的transformers模型。这一库的推出极大地降低了开发者的门槛,使得复杂模型的部署变得更加便捷和高效。Transformers.js支持多种模型架构,包括BERT、GPT-2、T5、XLNet等,几乎覆盖了当前最先进的transformers架构。 在RAG模型的构建中,主要分为两个部分:检索模块和生成模块。检索模块的工作原理是对海量数据进行索引,并通过检索机制快速找到与用户查询最相关的数据段落;生成模块则在这些数据的基础上,利用生成式模型来构造出完整的回答。这种组合的优势在于,能够将机器学习模型的“理解”能力和结构化数据的可搜索性结合起来,从而为用户提供高质量、有针对性的回答。 具体到使用Transformers.js实现RAG的过程,首先需要准备一个适用于检索的数据集。这通常意味着需要对数据进行预处理,包括分词、建立索引等步骤。随后,在前端环境中加载Transformers.js库和预训练模型,将构建好的数据集作为检索数据源。 接着,前端开发者需要编写逻辑来处理用户的查询请求,将查询信息送入检索模块,然后根据检索结果,利用生成模块产生回答。这个过程需要前后端之间的协作,前端负责界面展示、用户交互以及展示最终回答,而后端则负责数据处理和模型运行。 此外,由于浏览器环境对计算资源有限制,因此可能需要在优化模型性能方面下功夫,比如压缩模型、动态加载模型组件等。这些优化手段不仅能够确保模型快速响应,还能提升用户体验。 实现浏览器内RAG模型后,前端开发者能够为用户提供更加智能和人性化的搜索体验。用户在进行查询时,系统不仅能提供简单的关键词匹配,还能根据上下文生成更加精准的答案。这在电商搜索、问答系统、智能客服等多个领域具有广泛的应用价值。 前端大模型,尤其是结合了RAG技术的模型,为前端开发者提供了一个强大的工具。通过Transformers.js这一强大的JavaScript库,开发者可以构建出高性能的智能应用,为用户带来前所未有的互动体验。随着前端技术的不断演进,这些智能模型的应用场景将会越来越广泛,其在提升用户体验方面的作用将愈发显著。
2025-07-08 11:02:06 3KB javascript
1
知识点一:前端大模型入门 前端大模型入门是指对前端开发者来说,需要掌握的大型人工智能模型的入门知识。这种模型在处理自然语言、图像识别、音频处理等方面表现出色,已经成为现代Web应用不可或缺的一部分。 知识点二:Transformers.js的使用 Transformers.js是一种JavaScript库,它允许开发者在浏览器端使用预训练的大型语言模型。其核心功能包括文本生成、翻译、问答等,能够帮助开发者快速构建具有人工智能能力的前端应用。 知识点三:纯网页版RAG实现 RAG(Retrieval-Augmented Generation)是一种新型的问答系统架构,它可以检索知识库中的信息并将其融合到生成模型中。在本篇内容中,我们将会探讨如何在纯网页端实现RAG系统,不需要第三方接口和后端支持。 知识点四:qwen1.5-0.5B模型 qwen1.5-0.5B模型是本篇中提到的一个特定的大型语言模型。在前端开发中,开发者可以直接使用这个预训练模型来实现RAG问答系统,而无需进行复杂的训练过程。该模型的大小为1.5亿个参数,其中0.5B代表的是该模型的大小规格。 知识点五:无第三方接口和后端的实现 无第三方接口和后端的实现意味着整个RAG问答系统的所有功能都将在用户浏览器端完成。这不仅减轻了服务器的负载,也提升了用户的响应速度和体验。这种实现方式对前端技术提出了更高的要求,要求开发者必须熟练掌握JavaScript及相关前端技术。 知识点六:前端技术栈的应用 在实现纯网页版RAG的过程中,将涉及到一系列前端技术栈的应用,例如HTML、CSS、JavaScript等。开发者需要对这些技术有深入的理解和实践经验,才能成功地在浏览器中部署和运行大型语言模型。 知识点七:JavaScript在AI中的作用 JavaScript作为一种通用编程语言,在人工智能领域也发挥着重要的作用。尤其是随着Web应用的复杂度增加,JavaScript在前端AI模型的运行、数据处理、用户交互等方面展现出其强大的能力。 知识点八:问答系统的发展趋势 问答系统作为一种人工智能应用,近年来在技术和服务模式上都取得了长足发展。在前端实现问答系统,不仅可以提升用户体验,还能实现更广泛的应用场景。开发者在掌握了相关知识点后,将能够为用户提供更智能、更个性化的问答服务。 知识点九:RAG架构的优势 RAG架构通过检索知识库中的信息,并将其结合到生成模型中,来提供更加准确和丰富的答案。这种架构的优势在于能够将语言模型的生成能力与大量背景知识结合,从而生成更加详实和精准的回答。 知识点十:大数据、机器学习和前端技术的结合 现代前端开发不再局限于传统的网页布局和样式设计,而是涉及到大数据处理、机器学习等复杂的逻辑。这种结合使得前端工程师可以创建出更加智能化的Web应用,极大地拓宽了前端技术的应用范围。
2025-07-08 11:01:48 4KB javascript
1