Richard S. Sutton的关于强化学习经典的教科书,此书为2017最新版,涵盖DeepMind团队最新理论成果,无论是想学习强化学习还是作为机器学习的泛读材料,都值得一看。
2022-02-27 21:55:14 10.85MB 强化学习
1
Gym-UnrealCV:用于视觉增强学习的逼真的虚拟世界 介绍 该项目将Unreal Engine与OpenAI Gym集成在一起,用于基于视觉增强学习。 在此项目中,您无需任何虚幻引擎和UnrealCV知识即可在各种现实的UE4环境中轻松运行RL算法。 已经发布了许多用于机器人视觉任务的环境,例如Searching for objects , Active object tracking和Control a robotic arm 。 该项目的框架如下所示: UnrealCV是Unreal Engine和OpenAI Gym之间的基本桥梁。 OpenAI Gym是用于开发RL算法的
2022-02-25 22:04:26 15.52MB reinforcement-learning gym unreal-engine unrealcv
1
深度强化学习课程 探索神经网络和强化学习的结合。 Python和PyTorch中的算法和示例 您是否听说过和的取得了惊人的结果? 这都是关于深度神经网络和强化学习的。 您是否想了解更多? 这是您最终学习Deep RL并将其用于新的令人兴奋的项目和应用程序的正确机会。 在这里,您将找到这些算法的深入介绍。 您将学习q学习,q学习,PPO,演员评论家,并使用Python和PyTorch实施它们。 最终目的是使用这些通用技术并将其应用于各种重要的现实世界问题。 德米斯·哈萨比斯(Demis Hassabis) 该存储库包含: 主要来自DeepMind和Berkley Youtube的频道的讲
1
一本关于强化学习很好的教材,附带代码,非常值得拥有!
2022-02-14 10:02:39 19.13MB 强化学习
1
保守离线分布强化学习_Conservative Offline Distributional Reinforcement Learning.pdf
2022-01-22 09:02:11 1.46MB cs
保护决策的深层强化学习_Deep Reinforcement Learning for Conservation Decisions.pdf
2022-01-22 09:02:10 518KB cs
从头开始训练机器人手臂 :建立培训框架 :学习从头开始构建环境 :完成基本的环境脚本,看看手臂如何运动 :插入强化学习方法并尝试对其进行培训 :优化和调试 :制定目标 依存关系 Python 张量流 g 麻木 此强化学习练习代码​​的中文教程为 。 您可以在上查看更多教程,或在了解有关我的更多信息。
1
Leiden大学Aske Plaat教授《深度强化学习》 深度强化学习近年来备受关注。在自动驾驶、游戏、分子重组和机器人等各种活动中,他们都取得了令人印象深刻的成果。在所有这些领域,计算机程序已经学会了解决困难的问题。他们学会了飞行模型直升机和表演特技动作,如回旋和翻滚。在某些应用中,他们甚至比最优秀的人类还要优秀,比如Atari、Go、扑克和星际争霸。深度强化学习探索复杂环境的方式提醒我们,孩子们是如何学习的,通过开玩笑地尝试东西,获得反馈,然后再尝试。计算机似乎真的拥有人类学习的各个方面; 这是人工智能梦想的核心。教育工作者并没有忽视研究方面的成功,大学已经开始开设这方面的课程。这本书的目的是提供深度强化学习领域的全面概述。这本书是为人工智能的研究生写的,并为希望更好地理解深度强化学习方法和他们的挑战的研究人员和实践者。我们假设学生具备本科水平的计算机科学和人工智能知识;本书的编程语言是Python。我们描述了深度强化学习的基础、算法和应用。我们将介绍已建立的无模型和基于模型的方法,它们构成了该领域的基础。发展很快,我们还涵盖了一些高级主题: 深度多智能体强化学习、深度层次强化学习和深度元学习。
2022-01-12 19:11:54 23.12MB 深度学习 强化学习
田春伟,徐永,李作勇,左望萌,费伦和刘宏的Atent-guided CNN for图像降噪(ADNet)由神经网络(IF:5.535)于2020年发布( ),并由Pytorch实现。 这篇论文被推到了Nueral Networks的主页上。 此外,微信公众号还在和 。 本文是第一篇通过深度网络属性解决复杂背景图像降噪的论文。 抽象 深度卷积神经网络(CNN)在低级计算机视觉中引起了相当大的兴趣。 研究通常致力于通过非常深的CNN来提高性能。 但是,随着深度的增加,浅层对深层的影响会减弱。 受这一事实的启发,我们提出了一种注意力导向的去噪卷积神经网络(ADNet),主要包括稀疏块(SB),特征增强块(FEB),注意块(AB)和重构块(RB)图像降噪。 具体而言,SB通过使用膨胀的和普通的卷积来去除噪声,从而在性能和效率之间进行权衡。 FEB通过很长的路途整合了全球和局部特征信息,以增强去噪
1
强化学习经典英文入门书,强化学习鼻祖sutton大作,入门必读
2022-01-06 12:21:49 11.65MB 强化学习 sutton
1