FER 基于FER2013 Kaggle数据集的面部表情识别模型。 当前模型可实现约67%的精度。 在添加更多训练数据集以提高概括能力的过程中。 对模型体系结构进行一些调整可能会提高准确性。
2021-12-04 20:06:43 802KB JupyterNotebook
1
vgg脸 使用PyTorch的人脸分类Python脚本 需要安装PyTorch 运行test.py文件 从获得的原始Caffe模型和测试图像/names.txt 从获得的.h5和
2021-12-04 11:12:15 78KB python face-recognition caffemodel pytorch-cnn
1
fake_news_detection 使用Kaggle数据集检测假新闻的简单模型
2021-12-03 01:34:50 35KB nlp data-science machine-learning news
1
PyRadar Help you read CINRAD basic data and draw PPI images automaticallly. This module can read all of basic data in CINRAD. Up to now, this module has only been checked by the basic data of SA data. All kinds of attributes and methods can help you get data in the original .bin document and draw the PPI images. About attributes and methods please read the RadarExample.py document. Before you usi
2021-12-02 13:37:20 5.92MB Python
1
pytorch到tflite的例子 将在PyTorch中定义和预训练的MobileNetV3Small转换为TFLite量化模型 要求 Python> = 3.6.0 Python套件: Keras==2.2.4 onnx==1.5.0 onnx2keras==0.0.3 tensorflow==1.14.0 torch==1.1.0 Pillow==6.1.0 用法 下载砝码 ./download_weight.sh 运行脚本 python3 main.py
2021-12-01 21:19:45 199KB Python
1
SequencePrediction Pytorch 实现RNN、LSTM、GRU模型
2021-11-30 14:40:25 12KB Python
1
Bayes GMM:贝叶斯高斯混合模型 概述 有限贝叶斯高斯混合模型 (FBGMM) 和无限高斯混合模型 (IGMM) 都是使用折叠吉布斯采样实现的。 示例和测试代码 运行make test来运行单元测试。 运行make test_coverage以检查测试覆盖率。 查看 examples/ 目录中的示例。 依赖关系 NumPy 和 SciPy: ://www.numpy.org/ 鼻子: : 参考资料和注释 如果您使用此代码,请引用: H. Kamper、A. Jansen、S. King 和 S. Goldwater,“使用固定维度声学嵌入对语音段进行无监督词法聚类”,IEEE 口语技术研讨会 (SLT) 会议录,2014 年。 在代码中,引用了以下内容: KP Murphy,“高斯分布的共轭贝叶斯分析”,2007 年,[在线]。 可用: : KP Murphy,
2021-11-30 13:26:09 56KB Python
1
JMbayes:贝叶斯方法下纵向和生存数据的联合模型 描述 该存储库包含R包JMbayes的源文件。 该软件包适用于使用MCMC的贝叶斯方法下的纵向数据和事件时间数据的联合模型。 这些模型主要适用于两种设置。 首先,当重点放在生存结果上时,我们希望说明误差测量的内源性(又称内部)时间相关协变量的影响。 其次,当重点放在纵向结果上时,我们希望纠正非随机辍学现象。 该软件包包含两个主要的联合模型拟合函数, jointModelBayes()和mvJointModelBayes() ,它们的语法相似,但功能不同。 基本功能jointModelBayes() 它可以拟合单个纵向结果和事件发生时间结果的联合模型。 用户可以使用参数densLong (默认值为正常pdf)为纵向响应指定自己的密度函数。 除其他外,这允许对具有分类和左删截纵向响应的联合模型以及具有Student-t误差项的鲁棒联合
1
Twitter情绪识别 经过训练的递归神经网络(RNN)模型,用于根据英语推文预测情绪。 我们的模型适用于字符,因此我们无需进行任何预处理就将整个推文传递为RNN。 我们正在预测三种情感分类: 埃克曼的六种基本情感, 普鲁奇克的八种基本情感 情绪状态简介(POMS)的六个情绪状态。 文件和文件夹: demo.ipynb :脚本显示了如何使用我们的模型来预测情绪或将推文嵌入Jupiter Notebook。 demo.py :脚本显示了如何使用我们的模型来预测情绪或在Python中嵌入推文。 motion_prediction.py :定义EmotionPredictor类的帮助脚本。
2021-11-25 21:28:02 91.29MB twitter deep-learning lstm hashtags
1
生成一个多边形,输出按顺指针方向输出顶点
2021-11-24 23:29:53 3KB 随机骨料模型