与经典的卷积神经网络(CNN)相比,提出的胶囊网络欣顿可以使用更少的网络层来很好地完成分类任务,并以更快的速度达到收敛。 胶囊网络的原理是基于CNN,只是将神经元形式从标量转换为向量,即一个胶囊,然后通过动态路由方法选择适合最终输出的胶囊1 。在胶囊网络的基础上,使用反卷积来还原图像并优化原始图像和还原图像之间的误差。 通过数据增强处理的名为Cohn- Kanade Database Plus(CK +)的经典面部情绪数据库用于进行实验。 最近,分类结果与NAO机器人结合在一起。 NAO机器人可以通过改变眼睛的颜色并说出结果来形象化情感,从而达到将理论与实践相结合的目的。
2022-03-12 14:47:31 235KB Capsule Convolution Neural Network
1
情感图像分类 建立CNN并将转移学习应用于新的分类问题。 这是一个私有的kaggle数据集,数据集链接位于: ://drive.google.com/drive/folders/1HtQkw7FiK9BT881teXnGj5_piibBMHdW?usp=sharin。 该数据集包含约28000张图像。 每个示例都是48x48灰度图像,与来自7个情感或类的标签(如生气,高兴等)相关联 完成了将数据整形为48 * 48并将图像的大小调整(裁剪)为32 * 32的预处理步骤。 我将旋转用于数据扩充的随机性。 我设计了具有三个隐藏层的CNN模型。 所有3层的内核大小都相同(3 * 3)。 我的模型学习的总参数为107015 超参数设置:epochs = 30,batch-size = 256,lr(Adam的学习率)=。0001我用几个不同的epochs和batch-size训练了模型,然后
2022-03-11 17:04:46 4KB JupyterNotebook
1
心理学上的研究表明,面部表情变化主要集中在眼睛、眉毛、鼻子、嘴巴等面部器官上。受其启发,提出一种基于面部结构的表情识别方法,重点分析眼睛、眉毛、鼻子、嘴巴等关键区域的联动变化来分析表情。首先,使用鲁棒的判别响应图拟合(discriminative response map fitting,DRMF)方法自动检测出对识别人脸表情最为关键的局部人脸区域,即眼睛、眉毛、鼻子和嘴巴的部分;然后从这些关键部分中提取Haar特征;最后采用Boosting学习和联动机制,学习得到基于联合Haar特征的表情分类器。在CMU表情数据库和JAFFE表情数据库上的实验结果表明了上述方法的良好性能,即基于面部构件识别表情的方法获得了与手工精准标注人脸面部构件识别表情方法相近的识别效果。
1
用于面部特征检测的 OpenCV 存储库 该存储库托管 OpenCV C++ 程序,用于检测最常见的面部特征,例如: 眼睛 眉毛 外唇轮廓 面部特征检测将进一步用于情感分类。
2022-03-04 08:55:07 207KB C++
1
《Kinect for Windows SDK v2.0 开发笔记 (十三) 高清面部帧(4) 面部模型构建器》所附带资源
2022-03-02 10:28:37 17KB Kinect C++ 面部捕捉
1
应用中央差分卷积网络(CDCN)进行面部反欺骗 安装 virtualenv -p python3 venv source venv/bin/activate pip install -r requirements.txt 数据准备 参考 [1]于子彤与赵,陈旭与王,泽正与秦,云霄与苏,卓与李,小白与周,冯与赵,国应。 搜索中央差分卷积网络以进行面部反欺骗,doi: : [2]中央差分卷积网络,doi: : [3]王则政,赵晨旭,秦云霄,周秋生,齐国俊,万钧,甄磊。 利用时间和深度信息进行多帧脸部反欺骗,doi: :
1
面部标志检测引擎 HRNet的TensorFlow实现,用于面部标志检测。 观看此演示视频: 。 特征 支持多个公共数据集:WFLW,IBUG等。 先进的模型架构:HRNet v2 数据扩充:随机缩放/旋转/翻转 模型优化:量化,修剪 入门 这些说明将为您提供在本地计算机上运行并运行的项目的副本,以进行开发和测试。 先决条件 正在安装 获取培训的源代码 # From your favorite development directory git clone --recursive https://github.com/yinguobing/facial-landmark-detection-hrnet.git 生成训练数据 有多个可用的公共面部标记数据集,可用于生成我们需要的训练热图。 对于此训练过程,图像将被放大。 第一步是将数据集转换为更易于处理的更均匀的分布。 您可以自己执行
2022-03-01 13:20:51 23.12MB Python
1
活动形状模型 用于面部关键点检测的主动形状​​模型 对象的形状由一组点表示(由形状模型控制)。 ASM算法旨在将模型与新图像匹配。 它使用主成分分析来减少要检查的点数,或者可以说是定义形状中的点之间的关系。 在这里,我们仅考虑由n个维度中的有限数量的k个点组成的对象。 通常,这些点是在复杂物体(例如人骨)的连续表面上选择的,在这种情况下,它们被称为界标点。 运行:运行文件名Shape_to_image.py,它带有两个参数,如下所示 python Shape_to_image.py [调整形状] [寻找形状的图像]
2022-03-01 09:27:22 8.02MB Python
1
面部表情识别器 允许识别面部表情的Android应用程序 这个想法是让人们开心地发现自拍照背后的隐藏情感,这些情感已成为日常生活的一部分。 使用您画廊中的照片或立即拍摄一张照片,即可发现您的表情以及您的朋友的表情。 对于检测到的面部,将显示7种面部表情(以百分比给出):中性,快乐,惊讶,愤怒,恐惧,悲伤和厌恶。 这个程序仅用于娱乐目的。 玩得开心。
2022-02-22 13:50:51 97.56MB Java
1
口腔颌面部创伤.pdf
2022-02-14 14:06:16 11KB 文档