- 笔记这是将该应用程序投入生产的示例,您应该使用celery或aws lambda。
2021-11-16 17:23:32 15.13MB machine-learning django keras image-classification
1
pytorch-3dunet PyTorch实施3D U-Net及其变体: 基于3D U-Net的标准3D U-Net ÖzgünÇiçek等人。 基于残差3D U-Net。 该代码允许对U-Net进行以下方面的训练:语义分割(二进制和多类)和回归问题(例如降噪,学习解卷积)。 二维U网 也可以训练标准2D U-Net,有关示例配置,请参见 。 只需确保将单例z维保留在H5数据集中(即(1, Y, X)而不是(Y, X) ),因为数据加载/数据扩充始终需要3级张量。 先决条件 Linux NVIDIA GPU CUDA CuDNN 在Windows上运行 该软件包尚未在Windows上进行过测试,但是有报告称该软件包已在Windows上使用。 要记住的一件事:在使用CrossEntropyLoss进行训练时:配置文件中的标签类型应该从long更改为int64 ,否则会出现错误:
2021-11-16 15:48:36 30.49MB pytorch unet semantic-segmentation volumetric-data
1
内眼深度学习 总览 这是一个深度学习工具箱,用于在医学图像(或更常见的是3D图像)上训练模型。 它与Azure中的云计算无缝集成。 在建模方面,此工具箱支持 细分模型 分类和回归模型 序列模型 分类,回归和序列模型可以仅将图像作为输入,或者将图像和非成像数据的组合作为输入来构建。 这支持了医疗数据的典型用例,在这些用例中,除了图像之外,还经常可以使用测量,生物标记或患者特征。 在用户方面,该工具箱专注于使机器学习团队能够实现更多目标。 它是云计算第一,并依靠来执行,簿记和可视化。 两者合计,得出: 可追溯性:AzureML保留已执行的所有实验的完整记录,包括代码快照。 标签会自动添加到实验中,以后可以帮助过滤和查找旧实验。 透明度:所有团队成员都可以访问彼此的实验和结果。 重现性:使用相同代码和数据的两次模型训练运行将得出完全相同的指标。 所有随机性源(例如多线程)均受到控制。 降低成本:使用AzureML,在开始培训工作时就请求所有计算(虚拟机,VM),并在最后释放它们。 闲置的虚拟机不会产生成本。 此外,Azure低优先级节点可用于进一步降低成本(便宜多达80%)。
2021-11-16 14:37:59 815KB deep-learning azure healthcare medical-imaging
1
多频道 用于越南人情绪分析的多通道LSTM-CNN模型 这是针对“用于越南人情绪分析的多通道LSTM-CNN模型” [ ]的实现。 我们提供了情绪分析数据集:VS。 数据集包括两个版本:标记化和不标记化。 要运行此代码: 请在preprocessing.py和load_data.py中指定数据路径。 运行“ python preprocessing.py”,然后运行“ python cnn_lstm.py” 要求: 凯拉斯 张量流 贡献 请在知识库中创建问题。 我们鼓励人们为该存储库做出贡献并在实际应用中应用。 执照 此存储库中的代码根据的条款。 如果您使用我们的数据或实施方式,请引用我们的以下论文,并通过电子邮件分享您的想法: @INPROCEEDINGS{Quan, author={Q. H. Vo and H. T. Nguyen and B. Le and M.
2021-11-16 13:33:51 16.35MB Python
1
请注意,该项目仍处于测试阶段。 请报告您遇到的任何问题或建议。 我们将尽力Swift解决它们。 也欢迎捐款! 神经先知 基于PyTorch的和启发的基于神经网络的时间序列模型。 文献资料 我们目前正在改进。 有关NeuralProphet的直观介绍,请查看的演讲。 讨论与帮助 讲解 有几个可以帮助您入门。 请参阅我们的以获取更多资源。 最小的例子 from neuralprophet import NeuralProphet 导入软件包后,可以在代码中使用NeuralProphet: m = NeuralProphet () metrics = m . fit ( df , freq
1
移动网 移动U-NET语义分割。 使用process_video文件每帧运行约40毫秒
1
TMC13 建造 OSX mkdir构建 光盘制作 cmake .. -G Xcode 打开生成的xcode项目并构建它 Linux mkdir构建 光盘制作 cmake .. 制作 视窗 md构建 光盘制作 cmake .. -G“ Visual Studio 15 2017 Win64” 打开生成的Visual Studio解决方案并进行构建 跑步 此TMC13编解码器实现对帧序列进行编码。 单个二进制文件包含编码器和解码器实现,并使用--mode选项进行选择。 选项文档通过--help命令行选项提供。 运行时配置和配置文件 可以在配置文件中指定所有命令行参数。 cfg /目录中提供了一组符合当前通用测试条件的配置文件模板。 例子 要生成配置文件,请运行gen-cfg.sh脚本: mpeg-pcc-tmc13/cfg$ ../scripts/gen-cfg.sh --al
2021-11-14 14:28:29 413KB C++
1
DeepSpeech剧本 使用DeepSpeech训练语音识别模型的速成班。 快速链接 从这里开始。 本部分将设定您对DeepSpeech手册可以实现的目标的期望,以及开始训练自己的语音识别模型所需的先决条件。 了解了DeepSpeech Playbook可以实现的功能后,本节将概述DeepSpeech本身,其组成部分以及它与您过去使用过的其他语音识别引擎的不同之处。 之前,你可以训练一个模型,你需要收集和格式化数据的语料库。 本节概述了DeepSpeech所需的数据格式,并逐步介绍了从Common Voice准备数据集的示例。 如果您正在训练使用与英语不同的字母(例如带有变音符号的语言)的模型,那么您将需要修改alphabet.txt文件。 了解得分手的工作,以及如何建立自己的得分手。 了解DeepSpeech的声学模型和语言模型之间的差异,以及它们如何组合以提供端到端语音识别。 本节
1
0.快速开始 挑战杯项目:金融文本情感分析模型|| 挑战杯项目:财务文本情感分析模型 金融领域短文本情感分析 配置要求: python 3.x 1.使用方法 1.0下载 sudo git clone https://github.com/AsuraDong/news-emotion.git news_emotion mv -R ./news_emotion/ 你的程序路径/ 1.1文件结构 clean_data / # 清洗数据 __init__ . py clean_html . py # 清洗网页标签 langconv . py # 简体和繁体转化 zh_w
2021-11-11 15:02:35 3.6MB python nlp finance machine-learning
1
Pytorch_rppgs 使用pytorch实现rppg模型 型号清单 DeepPhys(加拿大) MTTS 测试
2021-11-09 20:25:24 8.31MB Python
1