Angular的个人简历 由Angular和Github页面创建的简单的个人简历应用程序。 预览 用法 1-克隆存储库 git clone https://github.com/aitahtman/cv.git 您还可以在github帐户上创建一个分叉。 2-安装依赖项 cd cv npm install npm install -g angular-cli-ghpages 3-设置您的个人数据 为此,您只需编辑文件src / assets / data / perso.json { " profile " : { " firstname " : " SALAH EDDINE " , " lastname " : " AIT AHTMAN " , " title " : " Geomatics engineer " ,
2022-05-26 15:18:04 7.46MB online-cv online-resume resume-website TypeScript
1
简历 灵感来自@mathiasose的 去做 制作基本模板 翻译成英文。 网站和自述文件 使您的简历适合移动设备使用(半途完成:P) 使您的简历打印友好 使用最新信息更新您的简历 匿名化个人信息 待办事项(长远发展) 做一个不丑陋且不好的设计 :upside-down_face: 添加休闲/爱好 IT技能 添加志愿者工作 有关打印的重要 Chrome和Firefox似乎无法以正确的格式打印简历。 这可能是由于字体支持有限所致。 因此,我建议使用来获取PDF文件。 为什么会有两个几乎完全相同的用户作为贡献者? 简单明了,我有两个不同的github用户。 一个用户原本打算用于专业用途,但是我后来决定切换为仅使用一个用户。 为此,我不得不将项目移交给该用户。 我可能会花点时间,使它看起来像从未发生过的那样,迈恩懒惰:) 我在此决定将我的“休闲用户”匿名化。 这是因为我在其中进行了所有项目。
2022-05-26 09:55:28 347KB cv work HTML
1
火焰烟雾检测,只需要OPENCV C++,采用YOLO4TINY的模型,移植性好,速度快,免积分,大家可以看看哦
2022-05-25 11:07:19 80.85MB CV
1
第三方插件
2022-05-22 04:41:52 108KB EmguCV
1
Emgu常用dll,opencv的人脸识别(Emgu.CV.UI.dll),需要的可自行下载,后续会继续上传别的DLL
2022-05-22 04:39:44 27KB opencv dll
1
基于Emgu cv3.4.3.3016,在Unity中使用,实现了边缘羽化功能。
2022-05-14 21:34:09 82.72MB unity opencv Emgu cv
1
课程设计基于python opencv
2022-05-14 16:05:51 3.27MB python opencv 综合资源 开发语言
1
此链接是4.2.0.3662版本 ,3.0以上的版本的找不到的dll都合并到了Emgu.CV.World.dll里去了,从官网下载的
2022-05-12 08:59:01 119.47MB Emgu CV图像处理
1
【小白CV】手把手教你用YOLOv5训练自己的数据集(从Windows环境配置到模型部署)_梁瑛平的博客-CSDN博客.pdf
2022-05-11 20:13:22 6.47MB
1
Abstract Most image completion methods produce only one result for each masked input, although there may be many reasonable possibilities. In this paper, we present an approach for pluralistic image completion – the task of generating multiple and diverse plausible solutions for image completion. A major challenge faced by learning-based approaches is that usually only one ground truth training instance per label. As such, sampling from conditional VAEs still leads to minimal diversity. To overcome this, we propose a novel and probabilistically principled framework with two parallel paths. One is a reconstructive path that utilizes the only one given ground truth to get prior distribution of missing parts and rebuild the original image from this distribution. The other is a generative path for which the conditional prior is coupled to the distribution obtained in the reconstructive path. Both are supported by GANs. We also introduce a new short+long term attention layer that exploits distant relations among decoder and encoder features, improving appearance consistency. When tested on datasets with buildings (Paris), faces (CelebA-HQ), and natural images (ImageNet), our method not only generated higherquality completion results, but also with multiple and diverse plausible outputs.
2022-05-09 16:57:33 2.93MB 人工智能 深度学习 机器学习 CV
1