循环神经网络代码RNN-超全注释
#inputs  t时刻序列,也就是相当于输入  
#targets t+1时刻序列,也就是相当于输出  
#hprev t-1时刻的隐藏层神经元激活值  
def lossFun(inputs, targets, hprev):
    xs, hs, ys, ps = {}, {}, {}, {}
    hs[-1] = np.copy(hprev)
    print('hs=',hs)
    loss = 0  
    #前向传导  inputs 6xn
    for t in range(len(inputs)):
                                    
                                    
                                         2019-12-21 20:17:33 
                                             9KB 
                                                循环神经网络
                                     
                                        
                                            1