基于三维卷积自动编码器的高光谱分类无监督空间光谱特征学习 通过,,,张治,,。 拟议框架 介绍 与传统的手工特征提取算法相比,使用深度神经网络(DNN)的特征学习技术表现出卓越的性能。 但是,DNN通常需要大量的训练样本来学习有效的特征,而在高光谱图像中很难获得有效的特征。 因此,在本文中,提出了一种使用三维卷积自动编码器(3D-CAE)的无监督空间光谱特征学习策略。 提出的3D-CAE仅包含3D或元素操作,例如3D卷积,3D池化和3D批处理归一化,以最大程度地探索空间光谱结构信息以进行特征提取。 还设计了一个配套的3D卷积解码器网络来重建输入模式,通过该模式,可以训练网络中涉及的所有参数而无需标记训练样本。 在多个基准高光谱数据集上的实验结果表明,我们提出的3D-CAE在提取空间光谱特征方面非常有效,不仅在传统的非监督特征提取算法方面表现出色,而且在分类应用中也优于许多监督特征提取算
2021-10-18 16:31:36 6.09MB Python
1
PyTorch中的深度度量学习 Learn deep metric for image retrieval or other information retrieval. 我们的XBM被提名为2020年CVPR最佳论文。 知乎XBM上的一个博客 我写了一个知乎文章,通俗快速解读了XBM想法动机: 欢迎大家阅读指点! 推荐最近发表的不是我写的DML优秀论文: 来自康奈尔科技大学和Facebook AI 摘要:过去四年来,深度度量学习论文一直宣称准确性方面取得了长足进步,通常比十年前方法的性能提高一倍还多。 在本文中,我们将仔细研究该领域,以了解是否确实如此。 我们在这些论文的实验设置中发现了缺陷,并提出了一种评估度量学习算法的新方法。 最后,我们提供的实验结果表明,随着时间的推移,这种改进最多只能算是微不足道了。 XBM:DML的新Sota方法,被CVPR-2020接受为口服,并被提名
2021-10-17 14:51:47 44KB image-retrieval cvpr xbm deep-metric-learning
1
sfml_rpg:SFML上的RPG游戏供学习
2021-10-16 07:54:07 2.59MB C++
1
ShaderGraph学习
2021-10-15 15:39:36 53.68MB C#
1
包括DP, MC, TD, TD-lambda, DQN, PG, AC, A3C, DDPG, Dyna_Q, Bandit, AlphaGoBangZero以及部分仿真游戏源码
2021-10-14 16:17:05 32.58MB 强化学习
1
lua 学习源码
2021-10-14 13:08:40 16KB lua
1
使用R进行动手合奏学习 这是Packt发布的“ 进行的代码库。 使用集成技术结合机器学习算法功能的初学者指南 这本书是关于什么的? 集成技术用于组合两个或多个相似或相异的机器学习算法以创建一个强大的模型。 它提供了卓越的预测能力,并可以提高数据集的准确性。 本书涵盖以下激动人心的功能: 对重采样方法,引导程序和模型平均进行必要的审查 探索涵盖方法的覆盖范围,例如套袋,随机森林和增强 使用多种算法建立强大的预测模型 享受加强疗法的综合治疗 具有ROC等统计测试的补充方法 如果您觉得这本书适合您,请立即获取! 说明和导航 所有代码都组织在文件夹中。 例如,Chapter02。 该代码将如下所示: set.seed(1234) X <- mvrnorm(n = 200, mu = c(0, 0, 0, 0, 0), Sigma = matrix(c( 1, .9999, .9
2021-10-13 15:55:03 38.32MB HTML
1
爱马仕 动画的注意力多模态学习。
2021-10-13 11:16:45 1.44MB MATLAB
1
易语言点选验证码学习源码,源码是易语言点选验证码的例子,并且演示了次世代验证码识别的用法。
2021-10-12 22:16:48 359KB 易语言
1
德鲁 无线供电的移动边缘计算网络中在线计算卸载的深度强化学习 使用Python代码重现我们的DROO算法以进行无线供电的移动边缘计算[1],该算法使用随时间变化的无线信道增益作为输入并生成二进制卸载决策。 这包括: :基于实现的WPMEC的DNN结构,包括训练结构和测试结构。 :基于。 :基于实现。 :解决资源分配问题 :所有数据都存储在此子目录中,包括: data _#。mat :训练和测试数据集,其中#= {10,20,30}是用户编号 :针对DROO运行此文件,包括设置系统参数,基于 :基于。 :基于实现。 :当WD的权重​​交替时,运行此文件以评估DROO的性能 demo_on_off.py :当某些WD随机打开/关闭时,运行此文件以评估DROO的性能 引用这项工作 L. Huang,S。Bi和YJ Zhang,“用于无线移动边缘计算网络中在线计算
2021-10-11 17:51:48 24.01MB Python
1