大数据分析体系 -下.pdf
2021-10-25 18:12:03 16.37MB 11
1
测序技术推进科学研究的发展。随着第二代测序技术的迅猛发展,科学界也开始越来越多地应用第二代测序技术来解决生物学问题。比如在基因组水平上对还没有参考序列的物种进行从头测序(de novo sequencing),获得该物种的参考序列,为后续研究和分子育种奠定基础;对有参考序列的物种,进行全基因组重测序(resequencing),在全基因组水平上扫描并检测突变位点,发现个体差异的分子基础。在转录组水平上进行全转录组测序(whole transcriptome resequencing),从而开展可变剪接、编码序列单核苷酸多态性(cSNP)等研究;或者进行小分子RNA测序(small RNA sequencing),通过分离特定大小的RNA分子进行测序,从而发现新的microRNA分子。在转录组水平上,与染色质免疫共沉淀(ChIP)和甲基化DNA免疫共沉淀(MeDIP)技术相结合,从而检测出与特定转录因子结合的DNA区域和基因组上的甲基化位点。
2021-10-23 22:04:25 22.26MB 高通量测序
1
竞赛-大数据分析1k题库最新.xlsx
2021-10-20 20:07:50 150KB 竞赛-大数据分析1k题库最新
1
智慧水利大数据分析平台总体规划方案.pdf
2021-10-20 14:02:05 2.93MB 技术方案
大数据分析资料.pdf
2021-10-19 09:09:07 1.73MB 练习
1
面向多数据中心跨节点环境的公安大数据分析方法
2021-10-19 09:02:37 906KB
自媒体时代基于大数据分析的高校宗教渗透研判与防范
2021-10-19 09:02:35 2.51MB
《大数据分析 数据科学应用场景与实践精髓》是一本讨论大数据理论及应用实践的专著,从讨论理论界的前沿观点开始,之后转向讨论这些理论在日常商业活动中的实践应用。 《大数据分析 数据科学应用场景与实践精髓》首先介绍了大数据分析的业务应用场景、分析建模过程和主要任务,以及模型商用的关键点;接着讲述了数据收集、抽样和预处理的实施要点;之后系统性地讨论了各种模型技术及其应用,包括预测分析、描述分析、生存分析、社交网络分析等。在完成了这些理论知识和模型技术方法铺垫之后,就进入到实践应用部分,包括把分析活动转化为生产力的关键事项,以及各种应用实例。 《大数据分析 数据科学应用场景与实践精髓》帮助读者系统地梳理了各类模型方法的技术要点和应用要点,包括线性回归、Logistic回归、决策树、聚类、关联规则、序列规则、神经网络、支持向量机、套袋算法、Boosting算法、*森林算法、生存分析等;本书还介绍了大量的应用实例,如信用风险建模、欺诈检测、营销响应提升模型、客户流失预测、自动推荐、网页分析、社交媒体分析,以及业务流程分析等。因此,对于从事大数据分析相关工作的人士来说,本书是一本难得的实务指南;对于高等院校相关专业的师生来说,本书是一本非常好的课外阅读材料,特别是书中关于如何把分析变成生产力的章节部分,相信一定能给他们很多的启发和思考
2021-10-18 21:28:20 27.84MB 大数据分析 数据科学应用场景 bart
1
《触手可及的大数据分析工具:Tableau案例集》数据源《触手可及的大数据分析工具:Tableau案例集》数据源
2021-10-18 15:38:12 40.54MB 触手可及 Tableau 数据源
1