文件包括ipynb代码文件及使用数据集csv文件,ipynb文件请用jupyter或支持文件类型的编译器打开运行,保证文件结构与压缩结构一致。 以朝阳医院2018年的销售数据为例,了解医院在该年的销售情况,并从中分析出关键的业务指标。实验过程主要包括数据获取、数据清洗、构建模型、数据可视化以及消费趋势分析。 首先,在数据获取阶段,获取了朝阳医院2018年的销售数据,其中包括消费次数、消费金额以及药品销售情况等信息。数据清洗是为了确保数据的准确性和一致性,在这一步骤中,对数据进行了去重、缺失值处理以及异常值处理等操作,以保证后续分析的可靠性。 接着,根据实验目标构建了相应的模型,包括计算月均消费次数、月均消费金额以及客单价等业务指标的模型。通过对销售数据的统计和计算,得到了这些关键指标,从而可以更好地了解医院的销售情况和消费行为。 最后,在消费趋势分析中,对每天和每月的消费金额进行了深入分析,通过趋势图和统计数据,可以发现销售数据的波动情况和销售高峰期。
2025-06-13 15:20:37 343KB 数据分析
1
## 一、项目背景 本期我们通过分析某医院半年内的药品销售数据,看看医院那些药物购买者较多,那些天购药者较多等等,希望对小伙伴们有所帮助,如有疑问或者需要改进的地方可以在评论区留言。 ## 二、数据说明 该数据共`6578条`数据,共`7个`字段。分别是:`购药时间`、`社保卡号`、`商品编码`、`商品名称`、`销售数量`、`应收金额`、`实收金额`。 数据分析在现代医疗管理中具有至关重要的作用。通过分析医院的药品销量数据,可以对医院的药品销售情况有一个全面的了解,包括哪些药物最受欢迎、在哪些时间段内购药者最多等信息。这些分析结果对于医院药品库存管理、药品采购计划以及患者用药指导等方面都具有重要价值。 本项目以某医院半年内的药品销售数据为分析对象,通过对购药时间、社保卡号、商品编码、商品名称、销售数量、应收金额和实收金额等多个维度的数据分析,揭示了药品销售的模式和规律。数据集包含了6578条记录,涉及7个字段,为分析提供了充分的基础信息。 购药时间字段可以用来分析药品销售的时间分布,比如工作日和节假日的销售差异、一天内不同时间段的用药高峰等。社保卡号能够反映患者的医疗消费习惯,通过对其分析可以了解哪些患者群体对药品需求较大。商品编码和商品名称是药品识别的关键信息,通过这两个字段可以分析不同药品的销售情况,识别出热销药品。销售数量、应收金额和实收金额则直接反映了药品的销售规模和医院的收入情况,是评估医院经济效益的重要指标。 在进行数据分析时,可以采用多种工具和技术,如Python编程语言。Python在数据分析领域具有广泛应用,其强大的库生态系统,如Pandas、NumPy、Matplotlib等,提供了数据处理、统计分析和数据可视化所需的各种工具。通过编写Python脚本,可以高效地进行数据清洗、数据探索和结果可视化等任务。 此外,数据分析的结果对于医院的决策支持系统也有着重要的作用。数据分析不仅可以帮助医院管理者优化药品库存,减少库存积压,还可以为患者的用药安全提供参考。例如,通过分析药品销售数据,医院可以了解到某些药品的销售趋势,及时调整采购策略,确保药品供应的及时性和充足性。 通过可视化手段展示数据分析结果,可以更加直观地理解数据,更容易发现数据背后隐藏的模式。在这个项目中,将通过各种图表,如条形图、折线图、饼图等,直观地展示药品销售的时间分布、药品种类分布、销售额分布等信息,使分析结果更加易于理解。 该分析项目的应用场景不仅限于医院内部,还可以扩展到医疗保险机构、药品生产商、医疗政策制定者等多个层面。医疗保险机构可以通过分析医院的药品销售数据,监控医疗保险资金的使用情况,合理制定医疗保险政策。药品生产商则可以通过这些数据了解市场需求,指导其生产和市场策略。政策制定者可以通过分析药品销售数据,了解医疗需求的变化趋势,为制定公共医疗政策提供依据。 通过对医院药品销售数据的分析,可以为医院管理提供数据支持,为患者提供更加科学的用药指导,为医疗行业的各利益相关者提供决策支持,最终提升医疗服务质量,提高医疗资源的利用效率。
1
豆瓣电影排行榜前250条数据集是一个极具价值的资源,它不仅为我们的大作业数据分析项目提供了一个广泛而深入的电影样本,而且通过这些数据,我们可以进行多维度的分析和研究。这个数据集包含了来自不同年代、不同文化背景、不同语言和地区的电影,为我们提供了一个跨文化和跨时代的电影评价视角。 通过对豆瓣电影排行榜前250条数据的细致分析,我们可以挖掘出电影评分的分布特征,识别出哪些因素对电影评分有显著影响,比如导演的知名度、演员阵容的吸引力、电影的类型和主题、甚至是电影的宣传策略等。此外,用户评论的文本分析能够帮助我们理解观众的情感倾向,揭示出哪些电影元素能够引起观众的共鸣,哪些则可能导致观众的不满。 进一步地,我们可以利用这些数据来构建预测模型,预测新上映电影的市场表现,或者评估不同电影元素对票房收入的贡献度。这种分析不仅对电影制作方和发行方具有重要的参考价值,也对电影评论家和观众提供了一个更全面的了解电影市场和观众偏好的视角。 此外,通过对比不同时间段内的电影评分和评论趋势,我们还可以观察到电影评价标准和观众口味的演变,从而对电影行业的发展趋势进行预测。这些分析结果可以为电影行业的决策者提
2025-06-13 15:09:17 49KB 数据集 数据分析 豆瓣电影
1
房价预测系统是一种利用机器学习或深度学习技术对房地产市场价格进行预测的系统。这类系统通常基于大量的历史房价数据,通过构建预测模型,来推算未来或未经交易的房产价格。本压缩包包含了完整的代码和数据,可用于实际应用开发或学习研究。 在本压缩包中,我们能找到包含实际交易数据的文件,例如“房价数据.csv”和“anjuke_house_prices.csv”,这些文件中包含了不同房产的特征数据如位置、面积、建造年份以及成交价格等,是构建房价预测模型的重要依据。此外,还包含了一些模型文件,如“knn_model.pkl”,这表明使用了k-最近邻算法(K-Nearest Neighbors, KNN)构建的预测模型,而“BP_NN_Prediction_vs_True.png”和“knn_Prediction_True.png”则可能是展示了不同模型预测结果与实际成交价格的对比图像,帮助我们评估模型的准确性。 “BP_NN_Loss.png”文件则可能展示了使用了反向传播算法的神经网络(Back Propagation Neural Network, BP NN)在训练过程中的损失值变化,这有助于分析模型在学习过程中的表现,从而对模型进行优化。另外,代码文件“房价预测新版.py”可能是主要的预测脚本,用于执行预测任务和输出结果。而“对比实验-逻辑回归.py”和“对比试验-随机森林.py”则是对不同机器学习算法进行测试和比较的脚本,通过这些对比可以了解不同算法在房价预测任务中的优势和局限性。 此压缩包提供了一套完整的房价预测系统开发资源,包括数据集、模型文件、可视化图表和源代码,适用于机器学习和深度学习的研究和实践。通过这些资源,开发者不仅可以深入理解房价预测问题,还能够学习到如何使用机器学习方法解决实际问题,特别是如何在处理回归问题时选择合适的模型,以及如何评估和比较不同模型的性能。
2025-06-13 13:31:40 452KB 房价预测 机器学习 深度学习
1
车站异常行为检测数据集是为了解决在车站场景下,如何利用计算机视觉技术自动识别和检测异常行为的问题。此类研究在提升车站安全管理、预防犯罪行为、以及提升公共安全方面具有重要的应用价值。本数据集采用Pascal VOC格式和YOLO格式结合的方式,为研究者和开发者提供了2293张图片及其对应的标注信息,涵盖了包括正常行为在内的4个类别。 VOC格式通常指的是Pascal Visual Object Classes格式,这是一种广泛应用于目标检测和分类任务的标注格式,其包括图片、标注文件(XML格式)和分类文件等,每个标注文件详细记录了每个目标的位置和类别信息。而YOLO(You Only Look Once)格式的标注文件通常是txt文本文件,以特定格式记录了目标的类别和边界框坐标信息,适合YOLO模型的训练使用。 在本数据集中,包含了4个主要的标注类别,分别是“斗殴”、“损毁财物”、“摔倒”和“正常”。这些类别是车站异常行为检测中最常见的几类行为,具有很高的代表性。每个类别都通过矩形框的形式进行标注,矩形框内即为目标区域。例如,“斗殴”类别下标注了794个矩形框,表示数据集中共有794张图片包含了斗殴行为。 标注工具选择了labelImg,这是一个流行的图像标注工具,支持矩形框标注,非常适合本数据集的需求。标注过程中,工作人员会仔细分析图片内容,识别出不同类别的行为,并用矩形框准确地标出这些行为的位置。 在总计5216个标注框中,不同类别的框数存在差异,其中“摔倒”类别的框数最多,达到1334个,显示出数据集中摔倒这一行为出现的频率较高,可能是因为车站人流密集,摔倒的风险相对较大。而“损毁财物”类别的框数最少,只有86个,可能是因为这类行为本身发生的频率较低,或者是因为其在监控视频中不易被捕捉到。 值得注意的是,本数据集提供的仅仅是经过准确标注的图片数据,不包含任何用于模型训练的权重文件,也不对使用该数据集训练得到的模型或权重文件精度作出任何保证。这是因为在机器学习和深度学习中,模型的表现不仅仅取决于数据集的质量,还与模型的架构、训练过程、超参数设置等因素有关。 此外,数据集还提供了一部分图片的预览和标注例子,便于研究者和开发者直观了解数据集的质量和标注风格。数据集的提供者鼓励用户在使用数据集时遵守相关法律法规,尊重数据隐私和版权,合理合法地利用数据集进行研究和开发活动。
2025-06-13 10:34:02 1.02MB 数据集
1
数据模拟器的功能主要是通过“虚拟设备”模拟真实设备上报传感数据的行为,当您有以下情景时建议采用: 设备接入开发还未完成时,可以使用该功能同步进行应用方面的开发 为了验证某个Restful接口时,可以使用该功能快速验证数据 某些应用场景无法实现设备接入开发能力,可以使用该功能替换真实设备持续运行模拟数据 模拟设备上报数据 发送控制指令 请求返回设备数据 发送控制指令 1)使用该功能前需要先 添加传感器 (如果未添加设备,请先添加设备再添加传感器),已添加的略过。 2)请在此处选择需要虚拟的设备(默认为第一项): 111 3)在右侧的“模拟设备上报数据”表格输入相应模拟的数据,然后点“开始上报” 4)模拟设备开始连接服务器同时上报数据,并且记录在线信息等数据
2025-06-13 09:56:35 36.39MB
1
在本项目中,我们将探讨如何使用TensorFlow框架构建一个手写数字识别模型,该模型以MNIST数据集为训练基础,并能通过调用摄像头API实时识别图像中的数字。MNIST数据集是机器学习领域的经典入门数据,包含了0到9的手写数字图像,非常适合初学者进行图像分类任务的实践。 我们需要了解**MNIST数据集**。MNIST是由LeCun等人创建的,包含60000个训练样本和10000个测试样本。每个样本都是28x28像素的灰度图像。数据集分为训练集和测试集,用于评估模型的性能。 接下来,我们要涉及的是**TensorFlow**,这是一个由Google开发的开源库,主要用于构建和训练机器学习模型。TensorFlow使用数据流图来表示计算过程,节点代表操作,边则表示数据。它支持广泛的机器学习算法,包括深度学习,我们的项目将使用其进行神经网络建模。 在构建模型时,我们通常会采用**卷积神经网络(Convolutional Neural Network,CNN)**。CNN在图像识别任务中表现卓越,因为它能够自动学习图像的特征,如边缘、纹理和形状。对于MNIST数据集,一个简单的CNN架构可能包括一到两个卷积层,每个后面跟着池化层以减小尺寸,然后是全连接层用于分类。 训练模型时,我们可能会使用**梯度下降(Gradient Descent)**优化器和**交叉熵损失函数(Cross-Entropy Loss)**。梯度下降是一种求解最小化问题的方法,而交叉熵损失函数在分类问题中常见,衡量预测概率分布与实际标签之间的差异。 在模型训练完成后,我们可以通过调用**摄像头API**将模型应用于实时场景。这通常涉及到捕获图像、预处理(如调整大小、归一化等)以适应模型输入,然后将图像传递给模型进行预测。在这个过程中,可能会用到Python的OpenCV库来处理摄像头流。 为了提高模型的实用性,我们可以考虑引入**批量预测(Batch Inference)**,一次处理多个图像,以提高效率。此外,使用**滑动窗口(Sliding Window)**技术可以在图像中检测多个可能的数字区域,从而实现对一个或多个数字的识别。 在Numbers-Recognition-master这个项目文件中,应该包含了以下内容:源代码(可能包括数据预处理、模型构建、训练、测试和摄像头应用部分)、配置文件(如超参数设置)、以及可能的示例图像或日志文件。通过阅读和理解这些文件,你可以更深入地学习如何在实践中应用TensorFlow解决手写数字识别问题。
2025-06-12 22:39:15 46.81MB 人工智能 深度学习 tensorflow
1
简易实现测绘程序设计大赛试题:GNSS 多星多频数据预处理与质量检测(2025国赛选题二)-完整源码及测试数据
2025-06-12 21:06:47 90KB
1
电梯内电瓶车数据集是一种特定场景下的交通数据集,它包含了在电梯内使用的电瓶车在运行过程中产生的各类数据。这类数据集对研究电梯内部空间的物流自动化、交通行为分析以及安全性评估等方面具有重要的价值。 数据集中的信息通常包括但不限于以下几个方面: 1. 时间戳:记录电瓶车在电梯内行驶的准确时间,这对于分析交通流量和交通行为模式非常重要。 2. 位置信息:可能包括GPS数据、加速度计数据或者电梯内部的传感器数据,用于追踪电瓶车在电梯内的实际位置。 3. 速度数据:记录电瓶车在电梯内行驶的瞬时速度和平均速度,这对于评估电梯内的交通效率和安全距离有指导意义。 4. 载重信息:若电瓶车用于运输货物,那么其载重数据也是数据集的重要组成部分,有助于了解货物分布和电梯的承载能力。 5. 环境信息:可能包含电梯运行状态、电梯内外的温湿度、电梯门的开关状态等数据,这些数据有助于全面分析电瓶车的运行环境。 6. 安全事件记录:记录电瓶车在电梯内运行过程中遇到的安全事件,如紧急停止、自动门碰撞等,这对提升电梯内部交通安全具有重要意义。 7. 用户操作数据:包括电瓶车的启动、停止、转向等操作记录,有助于分析用户的行为习惯和操作特点。 8. 视频和图片数据:可能包含电梯内部的实时视频或图片数据,用于记录和分析电瓶车在电梯内的实际运行情况。 9. 传感器数据:电梯内的各种传感器数据,如烟雾探测器、温湿度传感器等,有助于研究电梯内部环境的变化对电瓶车运行的影响。 10. 诊断数据:电瓶车自身的系统诊断数据,如电量、电池健康状况、电机状态等,有助于维护和优化电瓶车性能。 电梯内电瓶车数据集的用途非常广泛。它可以用于交通流量和行为分析,帮助管理人员优化电梯内部的物流运输路径。通过分析数据,研究人员可以设计更安全的电瓶车使用规范和提高电梯内部的交通安全水平。此外,数据集还可以用于开发智能交通系统和提升电梯内部自动化水平。在遇到紧急情况时,准确的数据分析能够为安全撤离提供科学依据。 企业或研究机构可以利用这些数据进行模拟实验和分析,以便在不干扰实际运行的情况下测试新技术或新策略的效果。例如,可以模拟不同的交通规则对电梯内交通流的影响,或者测试新型传感器在提升电梯安全性能方面的作用。 电梯内电瓶车数据集为研究和优化电梯内部交通系统提供了宝贵的数据支持,具有非常高的实用价值和研究潜力。
2025-06-12 19:46:49 19.39MB 数据集
1
人工智能(Artificial Intelligence,简称AI)是一种前沿的计算机科学技术,其核心目标是通过模拟、延伸和拓展人类智能来构建智能机器与系统。它融合了计算机科学、数学、统计学、心理学、神经科学等多个学科的知识,并利用深度学习、机器学习等算法,使计算机能够从数据中学习、理解和推断。 在实际应用中,人工智能体现在诸多领域:如机器人技术,其中机器人不仅能执行预设任务,还能通过感知环境自主决策;语言识别和语音助手技术,如Siri或小爱同学,它们能理解并回应用户的语音指令;图像识别技术,在安防监控、自动驾驶等领域实现对视觉信息的精准分析;自然语言处理技术,应用于搜索引擎、智能客服及社交媒体的情感分析等。 此外,专家系统能够在特定领域提供专业级建议,物联网中的智能设备借助AI优化资源分配与操作效率。人工智能的发展不断改变着我们的生活方式,从工作场景到日常生活,智能化正以前所未有的方式提升生产力、便捷性和生活质量,同时也在挑战伦理边界与社会规则,促使我们重新审视人与技术的关系及其长远影响。
2025-06-12 18:17:34 4.95MB 人工智能 ai python
1