支持向量机(Support Vector Machine, SVM)是一类按监督学习(supervised learning)方式对数据进行二元分类的广义线性分类器(generalized linear classifier),其决策边界是对学习样本求解的最大边距超平面(maximum-margin hyperplane)。SVM使用铰链损失函数(hinge loss)计算经验风险(empirical risk)并在求解系统中加入了正则化项以优化结构风险(structural risk),是一个具有稀疏性和稳健性的分类器。SVM可以通过核方法(kernel method)进行非线性分类,是常见的核学习(kernel learning)方法之一。
2024-01-04 08:41:33 3KB matlab 支持向量机
1
基于支持向量机SVM的数据分类预测,SVM分类预测,多特征输入模型。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2023-12-21 14:34:09 738KB 支持向量机
1
自然语言处理作业:基于CNN的文本分类模型训练 数据划分 分成训练集、验证集、测试集 加载预训练词向量模型 基于CNN的文本分类 数据划分 分成训练集、验证集、测试集加载预训练词向量模型 ../资料/实验/第四章/sgns.sogou.word.bz2 使用Keras对语料进行处理 提取文本中的词并向量化处理,也可以使用其他工具,或自己编写 定义词嵌入矩阵生成Embedding Layer构建模型、训练、评估 输出模型的准确率(以图的形式)
2023-06-08 20:56:11 338.98MB 自然语言处理 cnn
1
【预测模型】基于蚱蜢算法优化支持向量机实现预测分类模型matlab源码.md
2023-03-22 15:04:23 10KB
1
人工智能人脸表情分类,google官方模型, TensorFlow学习人工智能人脸表情分类,google官方模型, TensorFlow学习
2023-01-16 18:29:01 70.92MB Privat 人工智能 人脸表情分类 模型
1
贷款违约数据集含有 年龄、教育、工龄、地址、收入、负债率、信用卡负债、其他负债以及违约情况的字段。通过各特征来判断用户的违约情况。用到的技术模型如下 逻辑回归 面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏。 k近邻法(k-nearest neighbor,k-NN) 一种基本的分类和回归方法,是监督学习方法里的一种常用方法。k近邻算法假设给定一个训练数据集,其中的实例类别已定。分类时,对新的实例,根据其k个最近邻的训练实例类别,通过多数表决等方式进行预测。 决策树 一种基于树结构来进行决策的分类算法,我们希望从给定的训练数据集学得一个模型(即决策树),用该模型对新样本分类。决策树可以非常直观展现分类的过程和结果,一旦模型构建成功,对新样本的分类效率也相当高。 SVM(Support Vector Machine) 中文名为支持向量机,是常见的一种判别方法。在机器学习领域,是一个有监督的学习模型,通常用来进行模式识别、分类以及回归分析。 模型评估 可以根据混淆矩阵。得到其Accuracy准确率以及F1 score
2022-12-06 15:52:04 8KB scikit-learn 机器学习 分类模型 Python
1
在本文中,我们将ResNet模型转换为Core ML格式。
2022-11-28 16:12:53 518KB Python iOS machine-learning neural-network
1
本数据对应文章:《机器学习进行数据分类模型的预测》
2022-11-20 09:26:35 733KB 机器学习
1
基于RBM的深度学习算法 基于多层RBM模型,实现二分类学习算法,目前针对该问题是采用2层RBM,特征输入只有8维,效果并不理想。 功能框架: DBN.py:深度学习主框架,包括数据输入、输入sigmoid转换,RBM层堆叠,softmax层输出。 RBM.py:RBM层框架,包括gibss采样、交叉熵误差验证 dA.py:这个是降噪自动编码器,目前还在研究 SdA.py:,堆叠降噪自动编码器,目前仍在研究 HiddenLayer.py:隐层主要是权值计算与更新 util.py:这主要是最后的softmax函数计算及输出 normal_8.py:输入数据归一化到[0,1] train.txt:训练数据 text.txt:测试数据 基于复杂语言网络的文本分类: 这里面主要包括两部分,一部分是语言网络的生成,另一部分是语言网络的特征抽取。 第一部分采用的数据是twenty-news-group
2022-11-13 18:27:32 114KB Python
1
训练CNN分类模型-pokemon 任务: 1.尝试修改模型,加入归-化层,DropOut层 2.尝试可视化每层的输出内容 3.尝试收集新的分类数据集来体验训练过程 4.记得提交docx,或pdf文件
2022-11-11 16:31:08 17.9MB cnn pokemon
1