# 基于Python的Arduino串行通信与灯光控制项目 ## 项目简介 这是一个基于Python的Arduino项目,主要用于通过串行通信控制Arduino设备,并实现对LED灯的控制。项目包含两个文件seg.py和light.py。 ## 项目的主要特性和功能 1. 串行通信: 通过Python的serial库,实现电脑与Arduino设备的串行通信。 2. Arduino设备控制: 可以向Arduino发送指令,以及读取Arduino的数据。 3. LED灯控制: 通过pyfirmata模块,实现对Arduino上的LED灯的控制,包括亮度的调整。 4. 按钮状态检测: 能够检测按钮的状态,并打印出来。 ## 安装使用步骤 1. 环境准备: 确保你的电脑上已经安装了Python和所需的库(serial和pyfirmata)。 2. 硬件连接: 将Arduino设备连接到电脑的'COM5'端口。 3. 运行代码:
2025-06-25 13:01:36 6.35MB
1
SLR(1)文法分析器 基于Python3的SLR(1)文法分析器。目前的功能: 分析文法各非终结符号的FOLLOW(A)集合 分析文法所有的有效项目集族 计算文法的SLR(1)分析矩阵 简单的输入串分割(词法分析)功能 判断输入串是否为文法的合法语句 生成四元式 依赖库 Pandas 使用方法 python main.py 进阶的使用方法:修改grammar.txt文件中的文法规则以自定义文法。但是如此一来四元式将无法正常生成。 文件说明 grammar.py/class Grammar 表示文法的类,使用init_grammar函数的返回值进行初始化,在初始化时对文法的FIRST和FOLLOW集进行分析。 project.py/class Project 表示'项目'的类。含有文法的一条产生式,以及表示圆点位置的整形变量。 project.py/class ProjectSet 表示项
2025-06-24 21:43:05 13KB Python
1
Python使用技巧,实战应用开发小系统参考资料,源码参考。经测试可运行。 详细介绍了一些Python框架的各种功能和模块,以及如何使用Python进行GUI开发、网络编程和跨平台应用开发等。 适用于初学者和有经验的开发者,能够帮助你快速上手JPython并掌握其高级特性。
2025-06-23 01:24:37 26.67MB python
1
在这个名为"精品--基于python招聘岗位数据爬虫及可视化分析设计毕业源码案例设计.zip"的压缩包中,我们可以预见到一系列与Python编程、数据爬取、数据分析以及可视化相关的实践项目。这个毕业设计案例旨在帮助学生或开发者掌握如何在实际场景中应用Python技术来解决特定问题,特别是针对招聘市场数据的收集和解读。 我们要了解Python爬虫的基本原理。Python爬虫是通过编写代码自动抓取互联网上的信息,通常涉及requests库用于发送HTTP请求,BeautifulSoup或PyQuery库解析HTML或XML文档结构,以及可能用到的异步请求库如Scrapy。在这个案例中,开发者可能使用了这些工具来获取各大招聘网站的职位信息,如职位名称、薪资、工作经验要求等。 接着,数据处理阶段可能包括清洗、过滤、去重等步骤。这通常涉及到pandas库,它提供了强大的数据处理功能,可以方便地对数据进行筛选、合并、排序和转换。此外,可能还会用到正则表达式(re模块)来处理和规范文本数据。 然后,数据分析部分可能运用了统计学方法,例如使用numpy和scipy库进行数值计算,统计职位需求量、平均薪资等指标。可能会对数据进行分组分析,比如按行业、地区或者经验要求划分,以揭示不同条件下的就业市场趋势。 数据可视化是将分析结果以图形形式展示出来,以便于理解和解释。Python的matplotlib和seaborn库提供了丰富的图表类型,如柱状图、折线图、散点图和热力图,可以清晰地展示职位分布、薪资区间等信息。另外,更高级的可视化库如plotly和geopandas可能被用来制作交互式图表和地理地图,增强视觉效果和交互性。 这个案例设计还可能包含详细的代码注释和文档,以帮助学习者理解每一步操作的目的和实现方式。它是一个宝贵的教育资源,不仅能够教授Python爬虫和数据分析的基础知识,还能让学生了解到如何将这些技术应用于解决实际问题,提升分析和解决问题的能力。通过实践这样的项目,学习者能够更好地准备自己应对未来的数据分析和开发工作。
2025-06-22 21:06:07 10.31MB
1
内容概要:本文详细介绍了利用Python进行微博文本情感分析的研究,涵盖了三种主要的技术手段:情感词典、支持向量机(SVM)以及长短期记忆网络(LSTM)。作者首先解释了数据预处理的方法,如编码选择、表情符号转换等。接着分别阐述了每种方法的具体实现步骤及其优缺点。情感词典方法简单直接但准确性有限;SVM方法通过TF-IDF提取特征,适用于中小规模数据集;LSTM则凭借深度学习的优势,在大规模数据集中表现出更高的准确性和鲁棒性。此外,还探讨了一个融合多种模型的混合方法。 适合人群:对自然语言处理、机器学习感兴趣的研发人员和技术爱好者,尤其是希望深入了解情感分析领域的从业者。 使用场景及目标:① 快速构建情感分析原型系统;② 在不同规模的数据集上评估并选择合适的情感分析模型;③ 提升微博评论等社交媒体文本的情感分类精度。 其他说明:文中提供了完整的代码示例和数据集下载链接,便于读者动手实践。同时强调了各方法的特点和局限性,帮助读者更好地理解和应用相关技术。
2025-06-22 13:42:34 1.94MB
1
# 基于Python的云运动一键跑步脚本 ## 项目简介 本项目是一个基于Python的自动化脚本,专为“云运动”系统设计,旨在实现一键跑步功能。通过模拟真实用户的操作,自动完成登录、生成跑步记录并上传至系统,同时可通过企业微信通知用户跑步结果。 ## 项目的主要特性和功能 1. 一键登录自动完成云运动系统的登录过程。 2. 自动生成跑步记录根据配置生成跑步记录,包括位置、速度、用时等信息。 3. 自动上传跑步记录将生成的跑步记录自动上传至云运动系统。 4. 企业微信通知通过企业微信通知用户跑步结果。 5. 灵活配置支持多种配置选项,如学校服务器地址、运动配速、步频等。 ## 安装使用步骤 ### 前提条件 确保已安装Python环境,并具备基本的命令行操作能力。 ### 安装步骤 1. 复制项目仓库 bash cd yunrunningscript 2. 配置文件
2025-06-22 10:21:15 470KB
1
内容概要:本文档由Amirhossein Ahrari提供,作为Google Earth Engine教程的一部分,主要介绍植被光学深度(VOD)产品的处理方法,使用Python API(Xee)。文档首先介绍了环境配置与初始化,包括安装所需库如xee、geemap、xarray等,并进行Earth Engine认证与初始化。然后,通过定义地理区域(以水文流域为例),获取并处理了2015年至2020年间L波段VOD数据集。对数据进行了年度和月度平均值计算,并通过matplotlib库绘制了不同时间尺度下的VOD分布图,最后将年度数据保存为netCDF格式。; 适合人群:对遥感数据处理、植被监测感兴趣的科研人员或学生,特别是熟悉Python编程且对Google Earth Engine有一定了解的用户。; 使用场景及目标:①学习如何利用Google Earth Engine平台获取和处理植被光学深度数据;②掌握使用Python API进行空间数据分析的方法;③了解植被光学深度数据的时间序列变化特征及其可视化表示。; 阅读建议:由于涉及到较多的技术细节,建议读者提前准备好相关软件环境,并按照文档步骤逐步操作,同时可以参考作者提供的视频教程加深理解。
2025-06-21 14:01:41 2KB Python Earth Engine 遥感数据处理
1
# 基于Python和Flask的企业微信自动回复机器人 ## 项目简介 本项目是一个基于企业微信的自动回复机器人,旨在通过自动化处理和回复企业内部消息,提升企业办公效率。项目采用Python语言和Flask框架开发,结合企业微信API,实现了消息的接收、解密、处理和加密回复功能。此外,项目还集成了数据库交互功能,用于存储和处理用户发送的消息,确保数据的安全性和隐私保护。 ## 项目的主要特性和功能 自动响应机器人能够自动接收并处理企业微信中的消息,并根据预设逻辑进行回复。 数据处理通过数据库交互功能,存储和查询用户发送的消息,便于后续分析和处理。 安全传输消息在传输过程中经过加密处理,确保通信的安全性和隐私性。 高效便捷通过自动化处理,减少人工干预,提升企业内部通信效率。 ## 安装使用步骤 1. 环境准备确保已安装Python 3.x版本,并安装所需的依赖库,包括Flask、requests等。 bash
2025-06-17 22:30:42 23KB
1
内容概要:本文详细介绍了使用Python 3.7和卷积神经网络(CNN)模型实现MNIST手写数字识别的图形用户界面(GUI)。首先简述了MNIST数据集的特点及其在机器学习领域的地位,接着重点讲解了Python环境配置、CNN模型的选择与应用以及GUI的开发实现。文中强调了数据预处理、超参数调整、模型训练与部署的关键步骤和技术细节。最后,总结了项目的成果并展望了未来的发展方向。 适合人群:对机器学习尤其是深度学习感兴趣的开发者,特别是希望了解如何构建和部署手写数字识别系统的初学者。 使用场景及目标:适用于想要深入理解CNN模型的工作机制及其在图像分类任务中的应用的研究人员或学生;同时也为那些计划开发类似GUI应用的人士提供了实用指导。 其他说明:文中提到的技术栈包括但不限于Python 3.7、TensorFlow/PyTorch、Tkinter、PyQt/wxPython等,这些都是当前流行的工具和技术,能够帮助读者更好地掌握相关技能。
2025-06-17 15:35:37 244KB
1
基于Python的网站漏洞扫描系统是一个自动化的安全工具,旨在帮助用户发现网站中存在的潜在安全漏洞。以下是该系统的功能描述: 自动化扫描:系统能够自动对目标网站进行深度扫描,无需用户手动操作,大大提高了扫描效率。 漏洞检测:系统内置多种漏洞检测模块,能够识别SQL注入、跨站脚本(XSS)、文件包含等常见Web安全漏洞。 报告生成:扫描完成后,系统会自动生成详细的漏洞报告,包括漏洞类型、位置、风险等级以及修复建议。 自定义扫描:用户可以根据需要自定义扫描参数,如扫描深度、目标URL列表等,以满足不同的安全检测需求。 多协议支持:系统支持HTTP和HTTPS等多种协议,确保能够全面覆盖目标网站的安全检测范围。 持续更新:随着Web安全漏洞的不断涌现,系统能够定期更新漏洞库和检测算法,保持对最新漏洞的敏感性。 易于使用:系统采用图形化界面设计,操作简单直观,用户无需具备专业的安全知识也能轻松上手。 该网站漏洞扫描系统通过自动化和智能化的方式,帮助用户快速发现网站中的安全漏洞,提高网站的安全性和稳定性。
2025-06-17 12:44:03 12.06MB python
1