使用Python和Keras框架开发深度学习模型对CIFAR-10图像分类的项目是一个典型的机器学习任务,涉及到构建、训练和评估一个深度神经网络来识别图像中的不同类别。以下是这个项目的详细描述: ### 项目概述 CIFAR-10是一个包含60,000张32x32彩色图像的数据集,分为10个类别,每个类别有6,000张图像。这些类别包括飞机、汽车、鸟类、猫、鹿、狗、青蛙、马、船和卡车。项目的目标是构建一个深度学习模型,能够自动将新的图像分类到这10个类别中的一个。 技术细节 卷积神经网络(CNN):由于图像数据具有空间层次结构,CNN能够有效地捕捉这些特征。 归一化:将图像像素值归一化到0-1范围内,有助于模型训练的稳定性和收敛速度。 批量归一化:加速模型训练,提高模型对初始化权重不敏感的能力。 丢弃层(Dropout):防止模型过拟合,通过随机丢弃一些神经元来增加模型的泛化能力。 优化器:如Adam,它结合了RMSprop和Momentum两种优化算法的优点。 损失函数:binary_crossentropy适用于多分类问题,计算模型输出与真实标签之间的差异。
2024-07-12 19:33:06 273.66MB python keras 深度学习
1
深度学习模型涨点注意力模块 即插即用,优化论文模型质量 # 1. SGE Attention SGE Attention在不增加参数量和计算量的情况下允许分类与检测性能得到极强的增益。同时,与其他attention模块相比,利用local与global的相似性作为attention mask的generation source,可进行较强语义表示信息。 2. A 2 Attention 作者提出的A 2-Net的核心思想是首先将整个空间的关键特征收集到一个紧凑的集合中,然后自适应地将其分布到每个位置,这样后续的卷积层即使没有很大的接收域也可以感知整个空间的特征。 第一级的注意力集中操作有选择地从整个空间中收集关键特征,而第二级的注意力集中操作采用另一种注意力机制,自适应地分配关键特征的子集,这些特征有助于补充高级任务的每个时空位置。 3. AFT Attention 注意力机制作为现代深度学习模型的基石,能够毫不费力地对长期依赖进行建模,并关注输入序列中的相关信息。然而,需要点积自注意力 - 广泛使用是在Transformer架构中的一个关键组件 - 已被证明
2024-07-08 15:02:11 106.15MB 深度学习
1
FlaskApp
2024-05-14 17:26:37 3KB HTML
1
matlab,强化学习MPC模型预测控制算法 基于强化学习+MPC模型预测控制算法的车辆变道轨迹跟踪控制MATLAB仿真 使用matlab2021a或者更高版本运行!!!!
2023-12-08 09:42:15 5.87MB matlab 强化学习 模型预测控制
新能源汽车整车控制器VCU学习模型,适用于初学者。 1、模型包含高压上下电,行驶模式管理,能量回馈,充电模式管理,附件管理,远程控制,诊断辅助功能。 2、软件说明书(控制策略说明书) 3、模型有部分中文注释 对初学整车控制器自动代码生成或刚接触整车控制器有很大帮助。
2023-09-21 10:16:56 3.1MB 软件/插件 范文/模板/素材
1
基于ip-iq变换的谐波检测算法,并联型APF 有源电力滤波器 谐波电流检测 matlab simulink仿真学习模型,其他检测方法也做了,有参考文献,适合自学。
2023-07-09 19:38:09 147KB matlab 网络协议 算法
1
ml_with_django ml_with_django是一个开源模板,用于通过django应用程序提供机器学习模型。 该项目还包含一个基于django-admin的几乎可用于生产环境的管理仪表板。 您仅需几个步骤,即可使用此模板非常快速地开发基于django的ml应用程序。 该项目使用tensorflow 1.8版本,该版本仍然依赖于旧api版本。 更新到当前的tensorflow版本可能会产生不兼容的冲突。 本文件的内容 截屏 图像管理的管理员后端 日志管理 用户和组权限的屏幕截图 设定(TBD) 移至设置。 预安装 python 3.6.5 点子 virtualenv或virtualwrapper 设置管理员用户并开始使用 默认情况下,Django将创建一个本地sqllite.db并将该数据库用于本地开发。 创建一个超级用户帐户,然后启动应用程序: $ m
2023-05-15 20:30:39 13.55MB machine-learning django object-detection JavaScript
1
TensorFlow中的深度学习模型 该存储库包含使用实现几种深度学习模型的jupyter笔记本。 每个笔记本均包含有关每种型号的详细说明,希望可以简化所有步骤。 笔记本在Python 3.6,Tensorflow 1.8中运行 楷模:
2023-05-08 23:00:21 270KB python machine-learning deep-learning notebook
1
近年来,恶意软件呈现出爆发式增长势头,新型恶意样本携带变异性和多态性,通过多态、加壳、混淆等方式规避传统恶意代码检测方法。基于大规模恶意样本,设计了一种安全、高效的恶意软件分类的方法,通过提取可执行文件字节视图、汇编视图、PE 视图3个方面的静态特征,并利用特征融合和分类器集成学习2种方式,提高模型的泛化能力,实现了特征与分类器之间的互补,实验证明,在样本上取得了稳定的F1-score(93.56%)。
1
机器学习的时间序列预测 一组预测时间序列的不同机器学习模型,具体来说是给定货币图表和目标的市场价格。 要求 必需的依赖项: numpy 。 其他依赖项是可选的,但是为了使最终模型更多样化,建议安装以下软件包: tensorflow , xgboost 。 经过python版本测试:2.7.14、3.6.0。 取得资料 有一个内置的数据提供程序,可以从获取数据。 目前,所有模型都已通过加密货币图表进行了测试。 提取的数据格式是标准安全性:日期,最高,最低,打开,关闭,交易量,报价量,weightedAverage。 但是模型与特定的时间序列特征无关,并且可以使用这些特征的子集或超集进行训练。 要获取数据, 从根目录运行脚本: # Fetches the default tickers: BTC_ETH, BTC_LTC, BTC_XRP, BTC_ZEC for all time periods. $ ./run_fetch.py 默认情况下,将提取Poloniex中所有可用时间段(天,4h,2h,30m,15m,5m)的数据,并将其存储在_data目录中。 您可以通过命令行参
2023-04-21 00:06:30 101KB python machine-learning statistics deep-learning
1