这篇论文讲述了将差分隐私应用到强化学习中,并通过实验验证该方法具有一定的可行性。对应版本的ppt在下载资源中。
2021-12-24 16:11:34 796KB 强化学习 差分隐私
1
基于生成对抗网络和差分隐私提出一种文本序列数据集脱敏模型,即差分隐私文本序列生成网络(DP-SeqGAN)。DP-SeqGAN通过生成对抗网络自动提取数据集的重要特征并生成与原数据分布接近的新数据集,基于差分隐私对模型做随机加扰以提高生成数据集的隐私性,并进一步降低鉴别器过拟合。DP-SeqGAN 具有直观通用性,无须对具体数据集设计针对性脱敏规则和对模型做适应性调整。实验表明,数据集经DP-SeqGAN脱敏后其隐私性和可用性明显提升,成员推断攻击成功率明显降低。
1
基于2014年的那片论文做的关于隐私保护和机器学习的ppt,一共有26页,可以演讲40分钟左右,从背景介绍,什么是机器学习,隐私攻击的方式,隐私保护的方式,主要介绍差分隐私的保护方式。
2021-12-13 21:20:07 28.59MB 隐私保护 差分隐私 机器学习 演讲
1
差分隐私保护是目前非常热的课题,一篇中文综述送给大家
2021-12-08 10:10:30 556KB priavy
1
差异性隐私和联合学习。 精选笔记本,介绍如何使用差异隐私和联合学习来训练神经网络。 入门笔记本 在开始学习差异隐私和联合学习之前,了解张量很重要; 神经网络的基本数据结构。 了解张量: 创建简单的神经网络 使用MNIST数据创建密集网络 转移学习 大多数情况下,您不想自己训练整个卷积网络。 对大型图像集(例如ImageNet)进行现代ConvNets培训需要在多个GPU上花费数周的时间。 可以帮助您解决此问题。 什么是差异隐私? 差异隐私是用于防止模型在学习过程中意外记住训练数据集中存在的秘密的一组技术。 为了使其正常工作,我们需要坚持以下几点: 向数据主体保证:不管有哪些研究,数据集或信息来源,都可以通过将您的数据用于任何分析中而不会受到不利影响或其他影响。 确保从敏感数据中学习的模型仅在学习他们应该学习的知识时,不会无意中学习从他们的数据中学到的知识 以下是一些笔记本,以进一
2021-12-04 21:20:28 81.86MB JupyterNotebook
1
差分隐私(DP)是保护隐私的敏感数据,同时保持其实用性的一个最成功的提议。在这次演讲中,我们将简要介绍DP框架,然后提出一个新的机制来实现分布式DP。
2021-11-05 12:53:36 17.29MB 差分隐私 分布式
1
大数据中的隐私保护问题是当前网络空间安全领域的一个研究热点,差分隐私保护作为严格且可证明的隐私保护定义,研究其在大数据环境下的应用现状能够为其后续的系统性应用等提供参考与指导。在系统分析差分隐私保护的相关概念与技术特性的基础上,通过对差分隐私保护技术在数据发布与分析、云计算与大数据计算、位置与轨迹服务及社交网络中的应用等进行综述,阐述了当前具有代表性的研究成果并分析了其存在的问题。研究表明,现有成果从差分隐私保护机理、噪声添加机制与位置、数据处理方式等方面对差分隐私保护应用进行了卓有成效的创新与探究,且相关成果在不同场景下实现了交叉应用。最后提出了差分隐私保护在大数据环境下进一步系统性应用还需要注意的四大问题。
1
基于差分隐私的移动社交网络技术软件工程研究.docx
2021-10-08 23:11:53 106KB C语言
基于社交网络的差分隐私技术应用之软件工程研究.docx
2021-10-08 23:11:26 161KB C语言
基于特征映射的差分隐私保护机器学习方法.pdf
2021-09-25 17:02:18 2.1MB 机器学习 参考文献 专业指导