面向中文歌词的音乐情感分类的研究,主要是分析如何在歌词文本中选择特征项,根据选出的特征项进行情感分类
2023-03-29 09:53:53 2.68MB 歌词文本 情感分类
1
基于训练好的语言模型(使用gensim的word2vecAPI),编写了一个情感分类模型,包含一个循环神经网络模型(LSTM)和一个分类器(MLP)。首先,将一个句子中的每个单词对应的词向量输入循环神经网络,得到句子的向量表征。然后将句向量作为分类器的输入,输出二元分类预测,同样进行loss 计算和反向梯度传播训练,这里的 loss 使用交叉熵 loss。
2023-03-19 15:08:18 12KB nlp pytorch lstm rnn
1
情感是音乐最重要的语义信息,音乐情感分类广泛应用于音乐检索,音乐推荐和音乐治疗等领域.传统的音乐情感分类大都是基于音频的,但基于现在的技术水平,很难从音频中提取出语义相关的音频特征.歌词文本中蕴含着一些情感信息,结合歌词进行音乐情感分类可以进一步提高分类性能.本文将面向中文歌词进行研究,构建一部合理的音乐情感词典是歌词情感分析的前提和基础,因此基于Word2Vec构建音乐领域的中文情感词典,并基于情感词加权和词性进行中文音乐情感分析.本文首先以VA情感模型为基础构建情感词表,采用Word2Vec中词语相似度计算的思想扩展情感词表,构建中文音乐情感词典,词典中包含每个词的情感类别和情感权值.然后,依照该词典获取情感词权值,构建基于TF-IDF (Term Frequency-Inverse Document Frequency)和词性的歌词文本的特征向量,最终实现音乐情感分类.实验结果表明所构建的音乐情感词典更适用于音乐领域,同时在构造特征向量时考虑词性的影响也可以提高准确率.
1
对下载的IMDB数据集中的test和train分别进行预处理从而方便后续模型训练,代码为PreProcess.py。预处理主要包括:大小写转化、特殊字符处理、stopwords过滤、分词,最后将处理后的数据存储为CSV格式,以方便后续调试。借用了nltk的 stopwords 集,用来将像 i, you, is 之类的对分类效果基本没影响但出现频率比较高的词,从训练集中清除。
2023-03-01 16:29:27 1KB pytorch RNN lstm 情感分类
1
电影评论数据作为训练数据集. 其中, 训练数据集20000条(正负向各10000条); 测试数据集6000条(正负向各3000条)。造福没有积分的宝宝。资源来自于https://www.ctolib.com/lxw0109-ChineseSentimentAnalysis.html
2022-12-27 11:22:29 3.57MB 中文情感分析 情感分类数据集
1
表情包情感分类数据集,用于情感分析,,各类表情图像共6992张图片 表情包情感分类数据集,用于情感分析,,各类表情图像共6992张图片 表情包情感分类数据集,用于情感分析,,各类表情图像共6992张图片
2022-12-09 11:27:55 695.5MB 深度学习 图片 表情 数据集
澳新网 ASGCN -为SPECT小号pecificģ拍摄和ÇonvolutionalÑetwork 论文的代码和预处理数据集,标题为“” ,,和。 更新 :我介绍了一个新的模型,该模型包含在有向依赖关系树上的双向图卷积网络。 2020年10月5日:由于下载时字向量已损坏(例如,Gloves.840B.300d.txt通常太大),许多人可能会遇到。 因此,我们在rest14数据集中发布了经过的单词嵌入,作为腌制的文件以及供您验证可重复性。 要求 Python 3.6 PyTorch 1.0.0 SpaCy 2.0.18 numpy的1.15.4 用法 使用以下命令安装软件包和语言模型 pip install spacy 和 python -m spacy download en 生成图形数据 python dependency_graph.py 使用此链接下载经过预训练的
2022-12-07 20:37:53 38.62MB Python
1
使用bert进行文本情感分类的源码
2022-08-23 20:37:05 9KB bert 深度学习
1
aclImdb_v1IMDB情感分类数据集.7z
2022-07-13 16:05:01 53.14MB 数据集
尝试将word embedding和卷积神经网络(CNN)相结合来解决情感分类问题。首先,利用skip-gram模型训练出数据集中每个词的word embedding,然后将每条样本中出现的word embedding组合为二维特征矩阵作为卷积神经网络的输入,此外每次迭代训练过程中,输入特征也作为参数进行更新;其次,设计了一种具有三种不同大小卷积核的神经网络结构,从而完成多种局部抽象特征的自动提取过程。与传统机器学习方法相比,所提出的基于word embedding和CNN的情感分类模型成功地将分类正确率提升了5.04%。
1