时序预测|基于长短期记忆网络时间序列LSTM预测Matlab程序 单变量 1.程序功能已完成调试,用户可以通过一键操作生成图形和评价指标。 2.数据输入以Excel格式保存,只需更换文件,即可运行以获得个人化的实验结果。 3.代码中包含详细注释,具有较强的可读性,特别适合初学者和新手。 4.在实际数据集上的效果可能较差,需要对模型参数进行微调。 CSDN:机器不会学习CL 时序预测|基于长短期记忆网络时间序列LSTM预测Matlab程序 单变量 1.程序功能已完成调试,用户可以通过一键操作生成图形和评价指标。 2.数据输入以Excel格式保存,只需更换文件,即可运行以获得个人化的实验结果。 3.代码中包含详细注释,具有较强的可读性,特别适合初学者和新手。 4.在实际数据集上的效果可能较差,需要对模型参数进行微调。 CSDN:机器不会学习CL
2025-04-12 16:27:55 102KB 网络 网络 lstm matlab
1
基于GA-BP多变量时序预测的优化算法模型——代码文注释清晰,高质量多评价指标展示程序,GA-BP神经网络优化多变量时序预测模型:基于遗传算法的BP神经网络多维时间序列预测程序,GA-BP多变量时序预测,基于遗传算法(GA)优化BP神经网络的多维时间序列预测,多输入单输出 程序已经调试好,无需更改代码替数据集即可运行数据为Excel格式。 1、运行环境要求MATLAB版本为2018b及其以上 2、评价指标包括:R2、MAE、MBE、RMSE等,图很多,符合您的需要 3、代码文注释清晰,质量极高 4、测试数据集,可以直接运行源程序。 替你的数据即可用 适合新手小白 ,关键词:GA-BP多变量时序预测; 遗传算法优化BP神经网络; 多维时间序列预测; 多输入单输出; MATLAB版本2018b; 评价指标(R2, MAE, MBE, RMSE); 代码文注释清晰; 测试数据集; 新手小白。,基于GA-BP算法的多变量时序预测模型:高注释质量、测试数据集直接可用
2025-04-07 16:40:16 2.42MB
1
基于径向基神经网络的单变量时间序列预测Matlab程序RBF 基于径向基神经网络的单变量时间序列预测Matlab程序RBF 基于径向基神经网络的单变量时间序列预测Matlab程序RBF 基于径向基神经网络的单变量时间序列预测Matlab程序RBF 基于径向基神经网络的单变量时间序列预测Matlab程序RBF 基于径向基神经网络的单变量时间序列预测Matlab程序RBF 基于径向基神经网络的单变量时间序列预测Matlab程序RBF 基于径向基神经网络的单变量时间序列预测Matlab程序RBF 基于径向基神经网络的单变量时间序列预测Matlab程序RBF 基于径向基神经网络的单变量时间序列预测Matlab程序RBF 基于径向基神经网络的单变量时间序列预测Matlab程序RBF
2024-05-30 16:06:01 24KB matlab 神经网络 时序预测
1
Python 深度学习 北京空气质量LSTM时序预测 tensorflow自定义激活函数hard tanh keras tensorflow backend操作 2010.1.2-2014.12.31北京空气雾霾pm2.5 pm10数据集 折线图loss下降趋势预测值真实值对比图 label encoder one hot min max scale 标准化 numpy pandas matplotlib jupyter notebook 人工智能 机器学习 深度学习 神经网络 数据分析 数据挖掘
2024-04-27 15:13:31 453KB Python 深度学习 tensorflow LSTM
1
BP神经网络时间序列预测MATLAB源代码(BP时序预测MATLAB) 1、直接替换数据即可使用,不需要理解代码 2、代码注释详细,可供学习 3、可设置延时步长 4、自动计算最佳隐含层神经元节点数量 5、作图精细,图像结果齐全 6、各误差结果指标齐全,自动计算误差平方和SSE、平均绝对误差MAE、均方误差MSE、均方根误差RMSE、平均绝对百分比误差MAPE、预测准确率、相关系数R等指标,结果种类丰富齐全 7、Excel数据集导入,直接把数据替换到Excel即可 8、可自动随意设置测试集数量 9、注释了结果在工作区
2024-03-26 11:03:33 30KB matlab 神经网络 编程语言
1
为有效挖掘瓦斯涌出量监测数据隐含特征,预防瓦斯动力灾害,基于希尔伯特-黄变换(HHT)方法、布谷鸟搜索算法(CS)和极限学习机(ELM)基本理论,构建了瓦斯涌出量的HHT-CSELM动态预测模型。通过EMD将样本序列分解成多个不同频率的本征模态函数(IMF)分量;利用Hilbert变换获取各分量的瞬时频率,并据此将IMF分量划分成较高频和低频,采用不同的预测模型进行预测,经叠加各预测值得到最终预测结果。以汾西矿业集团某矿瓦斯涌出量监测数据为例进行仿真实验,结果表明:HHT方法能有效降低数据复杂度,其最小相对误差为0.144%,最大相对误差为0.388%,平均相对误差为0.281%,具有较高的预测精度和泛化能力;更好地适用于非平稳时间序列预测。
2024-01-15 23:40:20 291KB 行业研究
1
基于VMD-Attention-LSTM的时间序列预测模型(代码仅使用了一个较小数据集的训练及预测,内含使用使用逻辑,适合初学者观看,模型结构是可行的,有能力的请尝试使用更大的数据集训练)
2023-11-27 16:48:52 5.26MB lstm VMD 时间序列预测 预测算法
1
内附源数据、代码及word。代码包括:平稳性检验、协整检验、滞后阶数的确定、VAR 模型的拟合、脉冲响应分析、VAR 模型的预测
2023-01-12 02:33:39 1.38MB R语言 煤炭价格 煤炭价格预测 var
比较完整地给出了数据预处理,缺失值补全,特征分析过程以及训练和交叉验证的注意事项,适合数据挖掘新人找到解题思路,全程没有调参,没有模型融合,只凭一手简单的特征和xgboost。 preprocess.py: 数据预处理(类型转换,缺失值处理,特征提取) xgbosst.py: 训练模型和交叉验证 根据题目给出的信息, 除了路本身的信息外, 训练数据基本上只有旅行时间, 而我们要预测的也是未来的平均旅行时间, 而且根据我们的常识, 现在的路况跟过去一段时间的路况是很有关系的, 因此该问题应该是一个自回归问题, 用过去几个时刻的交通状况去预测未来时刻的交通状况
【混沌时间序列预测rnn的广义实现】 在不使用任何库或数据预处理工具的情况下,已经创建和编码了完整的模型。主要目标是对未来henon混沌时间序列的预测。 bptt.m -时间反向传播 forward.m -正向传播 dsigmoid.m , dtanh -激活函数的导数 sigmoid.m - 变参数Sigmoid函数 gradDes -梯度下降
2022-12-02 14:29:52 151KB RNN 混沌时间序列预测 MATLAB