内容概要:本文详细介绍了基于STM32F334芯片的高精度定时器(HRTIM)实现全移相PWM输出的方法。首先进行HRTIM的基础配置,包括时钟使能、主定时器配置以及预分频设置。接着分别配置四路PWM通道,通过设置CMP1xR和CMP2xR寄存器来控制占空比和相位偏移。文中还提供了实时调整频率和相位的具体方法,如通过Set_PhaseShift()函数动态改变相位,通过Set_Frequency()函数调整PWM频率。此外,文章强调了GPIO和输出极性的正确配置,以及使用硬件死区保护的重要性。最后,作者分享了一些调试经验和注意事项,如使用示波器监控波形变化,确保参数修改的安全性和同步性。 适合人群:具有一定嵌入式开发经验,熟悉STM32系列单片机的开发者。 使用场景及目标:适用于需要精确控制多路PWM输出的应用场合,如电机控制、电源转换等领域。主要目标是实现高精度的全移相PWM输出,并能够实时调整频率和相位。 其他说明:文中提供的代码可以直接用于STM32F334平台,但在实际应用中需要注意系统时钟配置和硬件连接的准确性。建议在调试过程中配合示波器或逻辑分析仪进行波形监测,以确保输出的稳定性和准确性。
2025-07-22 17:26:34 255KB
1
STM32F334,全逆变,HRTIM用于移相全电路的脉冲驱动。CHA1,CHA2互补输出,插入了死区。例程中含有1流水灯2定时器实验3按键检测4外部中断5ADC读取温度6串口通讯7 I2C读取EEPROM
2025-07-19 10:44:26 17.05MB stm32
1
开关拓扑电源电路是电力电子领域中的重要组成部分,它们在各种设备和系统中起到电压转换、功率调节和能源管理的作用。这些拓扑结构各有特点,适用于不同的应用需求。以下是关于标题和描述中提及的几个主要开关电源拓扑的详细解释: 1. **半同步整流**:半拓扑由两个开关管组成,它们交替导通以控制电流流向。同步整流是指使用低内阻的MOSFET代替二极管作为整流元件,以降低损耗,提高效率。 2. **正激变换器**:在正激拓扑中,变压器初级侧的开关器件(如IGBT或MOSFET)和负载之间没有隔离。这种设计允许直接耦合,但需要复杂的控制来防止磁饱和。 3. **反激变换器**:与正激相反,反激变换器在开关器件关闭时储存能量,并在开关打开时通过变压器传递到次级侧。它提供了隔离,适合小功率应用。 4. **LLC谐振变换器**:结合了升压和降压特性,LLC拓扑利用谐振电路实现零电压开关,从而减少开关损耗,提高效率。它适用于宽输入电压范围和高功率密度的应用。 5. **不对称半**:在这种拓扑中,两个开关管的开关频率或占空比不同,可以实现特定的电压和电流波形,以满足特殊需求。 6. **对称半**:对称半拓扑中,两个开关管的开关频率和占空比相同,用于保持电流的平衡,常见于逆变器和马达驱动。 7. **全变换器**:四个开关管组成全结构,能够改变电流流向,提供更大的设计灵活性,适用于高电压、大功率应用。 8. **推挽变换器**:两个开关管并联工作,交替导通,可以实现双向电流流动,适用于需要双向电压转换的场合。 9. **输入/输出滤波器经典EMI电路**:为了抑制电磁干扰(EMI),在电源电路的输入和输出端通常会加入滤波器。这些滤波器包括LC滤波器、π型滤波器等,用于减少高频噪声,确保系统符合EMI标准。 正确布线对于电源电路的性能至关重要,这涉及到信号完整性和电磁兼容性(EMC)。良好的布线实践可以减少电磁辐射,防止干扰,提高电源的稳定性和可靠性。具体方法包括: - 电源线和地线应尽可能粗,减少电阻和感抗。 - 高速信号线应远离模拟信号线和电源线,以减少耦合。 - 使用屏蔽电缆减少对外部噪声的敏感性。 - 布局时,将噪声源和敏感元件分开,并考虑信号流向,避免环路面积过大。 - 使用适当的去耦电容,减少电源纹波。 以上内容详细介绍了开关电源电路的各种拓扑结构以及输入输出滤波器的设计和布线方法,这些都是理解和设计高效、稳定电源系统的基础。
2025-07-17 13:18:51 38.91MB 半桥同步整流
1
内容概要:本文深入探讨了三相式逆变器在虚拟同步机(VSG)控制下的SVPWM调制技术和电压电流双闭环控制策略。首先介绍了VSG控制的基本原理及其在逆变器中的应用,强调了其提高稳定性和动态响应能力的优势。接着阐述了SVPWM调制技术的工作机制,解释了它是如何优化输出波形质量并减少谐波干扰的。最后讨论了电压电流双闭环控制的作用,即通过内外环控制确保输出电压和电流的精确度。文中还提到了相关参考文献以及对Simulink 2022以下版本的支持情况。 适合人群:从事电力电子技术研究的专业人士,尤其是关注逆变器控制策略的研究人员和技术人员。 使用场景及目标:适用于需要提升三相式逆变器性能的研究项目或实际工程应用,旨在改善输出波形质量和系统稳定性。 其他说明:对于Simulink不同版本有特殊需求的用户,作者可以根据具体版本进行模型转换,确保兼容性。
2025-07-17 11:04:11 1023KB
1
与全LLC仿真中的谐振变换器四种控制方式探索:频率控制PFM、PWM、移相控制PSM及混合控制PFM+PSM在Plecs、Matlab Simulink环境下的应用。,半与全LLC仿真中的谐振变换器四种基本控制方式:频率控制PFM、PWM控制、移相控制PSM与混合控制PFM+PSM在plecs、matlab及simulink环境下的应用。,半LLC仿真,谐振变器的四种基本控制方式。 主要有 频率控制PFM PWM控制 移相控制PSM 混合控制PFM+PSM 运行环境有plecs matlab simulink ,半; 全LLC仿真; 谐振变换器; 控制方式:频率控制PFM; PWM控制; 移相控制PSM; 混合控制PFM+PSM; 运行环境:plecs; matlab; simulink。,半LLC仿真研究:四种谐振变换器控制方式探索运行环境:Plecs与Matlab Simulink的比较与运用
2025-07-16 16:46:13 3.35MB istio
1
十四届蓝杯国赛考试计算思维 U10 组真题和答案
2025-07-16 16:40:22 1.04MB 蓝桥杯
1
内容概要:本文详细介绍了STM32全逆变电路的设计与实现,重点讲解了IR2110驱动IRF540N MOSFET的高效率输出交流波形。文章首先概述了全逆变电路的基本原理及其广泛应用,接着深入探讨了IR2110作为高电压、高速MOSFET驱动器的特点及其在半MOS管中的应用。随后,文章详细解析了STM32如何通过定时器生成SPWM波形,并通过软件算法调整PWM参数以实现高质量的SPWM输出。此外,还提供了立创原理图的解析,展示了各元件的具体连接方式和工作原理。最后,作者总结了实践经验,强调了学习和掌握SPWM波形原理的重要性。 适用人群:对电力电子、电机控制等领域感兴趣的电子工程师和技术爱好者,尤其是希望深入了解全逆变电路和SPWM波形设计的人群。 使用场景及目标:适用于需要将直流电源转换为交流电源的实际应用场景,如家庭用电、工业控制等。目标是帮助读者理解并掌握全逆变电路的工作原理,特别是SPWM波形的生成和优化方法。 其他说明:文中提供的实践经验和代码解析对于初学者来说非常宝贵,有助于快速上手并进行实际项目开发。
2025-07-12 18:47:07 6.51MB 电力电子 SPWM STM32 MOSFET
1
基于DAB型双有源技术的单级高效率光伏微并网逆变器仿真研究:一种创新调制策略的实践与复现,基于DAB型双有源技术的单级高效率光伏微并网逆变器仿真研究:创新调制策略下的性能优化与控制方法验证,DAB型,双有源,微逆变器仿真,一种单级高效率的光伏微并网逆变器。 lunwen《Highly Efficient Single-Stage DAB Microinverter Using a Novel Modulation Strategy to Minimize Reactive Power》 控制方法,仿真复现。 ,DAB型; 双有源; 微逆变器仿真; 单级高效率; 光伏微并网逆变器; 控制方法; 仿真复现。,《基于DAB双有源的微逆变器仿真与高效控制策略研究》
2025-07-12 09:58:12 1.24MB 开发语言
1
"基于AT89c51主芯片的BLDC无刷直流电机驱动电路设计与仿真研究:三相序控制正反转及Keil代码与仿真实现","基于AT89c51主芯片的BLDC无刷直流电机驱动电路设计与仿真研究,实现三相序正反转控制及Keil代码、Proteus与Simulink仿真分析",BLDC无刷直流电机驱动电路,主芯片用AT89c51,三相按上135下462顺序,实现正反转。 带Keil代码,proteus仿真,simulink仿真。 ,核心关键词:BLDC无刷直流电机驱动电路; AT89c51主芯片; 三相; 正反转控制; Keil代码; Proteus仿真; Simulink仿真。,AT89c51驱动的BLDC电机正反转控制电路及仿真
2025-07-11 20:44:25 1.26MB
1
在当今电子设计领域,高效、稳定、小型化的电源系统成为技术发展的必然趋势,半LLC谐振变换器以其优越的性能在众多开关电源技术中脱颖而出。半LLC谐振变换器是一种典型的高频变压器设计,它结合了半结构与LLC谐振网络,被广泛应用于通信电源、电子设备、航天及电动汽车充电站等对性能要求极高的领域。 我们来了解一下半LLC型谐振变换器的拓扑结构。该变换器由四个主要部分构成:输入电源、谐振电路、变压器以及输出电路。在这四个部分中,谐振电路是整个变换器的核心。它不仅决定了整个系统的能量传输效率,还影响到输出电压的稳定性。通过精心设计的谐振电路,可以有效减少高频运行时的损耗,并降低对变压器设计的要求。 接下来,我们探讨一下高频变压器的设计过程,这是半LLC型谐振变换器设计中的重中之重。在设计过程中,我们需要按照以下步骤进行: 1. 确定变压器的基本参数,包括变压器的类型、尺寸、所用材料、绕组数等。这些参数将决定变压器的总体性能和适用范围。 2. 精心选择合适的磁芯材料。磁芯材料的选择对于高频变压器性能有着决定性的影响,它关系到变压器在高频运行时的损耗大小、热稳定性及整体效率。 3. 设计绕组结构。绕组结构的设计关乎到变压器的性能表现,良好的绕组结构设计能够进一步优化磁通分布,减少漏感和分布电容,从而提高变压器的工作效率和可靠性。 4. 优化变压器设计。设计师需要通过计算机模拟和实际测试来不断调整和优化设计方案,力求在保证性能的同时减小尺寸,提高效率,确保设计出的变压器在实际工作中既高效又可靠。 AP法(即铁氧体磁芯的功率损耗法)在高频变压器设计中具有广泛的应用。AP法是一种有效的设计工具,能够帮助设计师快速确定变压器的基本参数,如尺寸、材料和绕组数等,同时它还能指导设计师进行变压器的优化设计,以提升变压器的效率和可靠性。 应用AP法和优化设计,赵慧超在其论文《半LLC谐振电路知识详解-半LLC型谐振变换器的高频变压器设计》中展示了具体的高频变压器设计结果:选定了EE-100型号的变压器,绕组数为59和80,采用了18号导线。设计出的变压器效率高达95%以上,损耗仅为16.187瓦。 半LLC型谐振变换器的高频变压器设计不仅要求工程师具备扎实的理论基础和丰富的实践经验,还需运用现代计算机辅助设计工具。通过这样精密的设计流程,可以解决开关电源在高频运行时遇到的诸如高频损耗、输出电压不稳定、发热量大等常见问题。这样的设计方法不仅提高了电源系统的整体性能,而且对于推动电源技术的进一步革新有着积极的意义。在电子设计领域,这种对电源效率和稳定性的不懈追求,将驱动更多创新技术的涌现,为各行各业提供更为高效、可靠、便捷的电源解决方案。
2025-07-11 15:45:36 630KB 电子设计
1