骰子系数 matlab代码MRI分割 用于大脑异常分割的 U-Net 模型的实现. 有关原始源代码的更多信息,请查看作者编写的代码和代码。 数据集 用于训练该模型的数据集是 ,可在 Kaggle 上获得。 它包含来自 110 名患者的数据。 数据由大小为 256x256x3 的 MRI 切片和相应的二进制掩码 256x256 组成。 患者的最小和最大切片数分别为 20 和 88。 训练 该网络使用 105 名患者进行训练,其余 5 名用于验证。 数据增强包括 -20 到 20 度之间的旋转、水平和垂直翻转。 损失是使用 计算的。 该模型在 GPU 上进行了 85 次训练。 检索具有最佳验证损失的权重以进行验证预测。 结果 平均验证准确率约为 88%。 下面切片中的绿色分割代表真实情况,红色分割代表模型的预测。 安装 要安装依赖项,请运行以下命令: pip install -r requirements.txt 如果使用 Conda,您还可以创建具有以下要求的环境: conda env create -f environment.yml 默认情况下,环境名称为mri-segmentati
2023-03-23 19:04:16 34.27MB 系统开源
1
DeepMoji 使用在emojis上预先训练的深度学习模型的最先进的情感分析
2023-02-07 01:54:56 270.73MB Python开发-机器学习
1
深度学习模型与解释444
2022-12-20 09:28:42 1.27MB 深度学习
1
信用卡默认预测变量 机器学习/深度学习模型可预测默认的银行账户 项目概况 在Kaggle上找到的经过清理和分析的数据: ://www.kaggle.com/uciml/default-of-credit-card-clients-dataset 提供了有关Ames Housing数据集的详细视觉分析,以获取要素与数据结构之间的关系洞察力 通过将列合并为具有洞察力的信息,实现了工程设计的功能,例如总平方英尺和浴室总数 使用GridsearchCV优化随机森林,梯度提升回归,岭回归,套索回归和弹性网以达到最佳模型 使用的代码和资源 Python版本: 3.8软件包: pandas,numpy,sklearn,matplotlib,seaborn和keras原始Kaggle数据集: : //www.kaggle.com/c/house-prices-advanced-regression-t
2022-12-08 17:12:42 1.44MB JupyterNotebook
1
单变量时间序列预测开发深度学习模型_python源码+数据+超详细注释 内容: 多层感知器模型 卷积神经网络模型_CNN 递归神经网络模型_LSTM 递归神经网络模型_CNN+LSTM 递归神经网络模型_ConvLSTM2D 本文使用了5种不同的网络模型,实现了一元序列的自回归 1.MLP:多层感知机 2.CNN:卷积 3.LSTM:长短周期 4.CNN+LSTM卷积+长短周期 5.ConvLSTM2D卷积+长短周期 并且分别比较了5中模型的预测效果,CNN模型相对来时是最好的。 深度学习在一元时间序列预测中表现并不佳
2022-12-02 19:28:16 28KB MLP CNN LSTM ConvLSTM2D
matlab预测股票价格走势 - 基于时间序列分析的机器学习和深度学习模型股价预测
2022-11-26 19:26:30 4.2MB 股票分析 时序模型 时序分析
1
深度学习是当前机器学习和人工智能兴起的核心。随着深度学习在自动驾驶、门禁安检、人脸支付等严苛的安全领域中广泛应用,深度学习模型的安全问题逐渐成为新的研究热点。深度模型的攻击根据攻击阶段可分为中毒攻击和对抗攻击,其区别在于前者的攻击发生在训练阶段,后者的攻击发生在测试阶段。
2022-11-09 15:35:39 2.34MB 中毒攻击 防御
1
文献阅读(35)的原文,文章主要是机器学习和深度学习在糖网方面的应用。 文章核心:使用深度学习方法对眼底照中的糖网病灶进行自动检测和分类糖网。其中公设计三个方面:预处理,分割,分类
2022-10-21 12:05:30 3.56MB 文献阅读
1
深度学习模型在移动端部署
2022-10-14 17:05:35 43KB 深度学习 移动端部署
1
在本研究中,我们提出了一种基于自我关注的区域流感预测模型,称为SAIFlu-Net。该模型利用一个较长的短期记忆网络来提取每个区域的时间序列模式,并利用自我注意机制来发现发生模式之间的相似性。为了评估其性能,我们使用每周区域流感数据集对现有的预测模型进行了广泛的实验。结果表明,该模型在均方根误差和皮尔逊相关系数方面均优于其他模型。
2022-10-11 16:05:18 1.84MB LSTM GNN
1