滚动轴承是应用最为广泛、也是最易损坏的机械设备关键零部件之一,其状态影响着整个设备的稳定运行。因此,滚动轴承的状态监测和故障诊断一直为大家所重视。而将声发射技术应用于滚动轴承的状态监测与故障诊断,是当前研究的一个热点。 本文以声发射技术为手段,对基于声发射技术的滚动轴承状态监测与故障诊断进行了理论和实验研究,着重对滚动轴承点蚀故障的声发射诊断方法进行了详细研究。研究工作主要包括以下三个方面: 1、滚动轴承声发射信号的参数分析。采用了振铃计数、均方根、信号幅度、峭度系数等典型声发射参数对不同工况下(不同载荷、转速、故障尺寸及传播途径)滚动轴承声发射的特征及传播特性进行了分析,得出了各参数对工况变化的反应趋势及敏感性。 2、Morlet连续小波变换的参数选择。针对连续小波变换的尺度和基小波波形参数选择,提出基于遗传算法的优化选取方法,参数的优化选择有效提高了Morlet连续小波尺度谱对滚动轴承声发射信号分析的时频性能。 3、滚动轴承声发射信号的波形分析。在连续小波变换参数优化选取的基础上,对不同工况下滚动滚动轴承声发射信号进行时频分析,并结合希尔伯特谱分析,详细地分析了滚动轴承声发射的时频特性,提出了时频特征;另外,利用离散小波变换,进一步定量分析了信号时频分布。
2022-12-23 20:14:10 5.02MB 声发射 滚动轴承 故障诊断 小波变换
1
针对滚动轴承故障诊断中普遍存在的小样本学习问题,采用支持向量机实现轴承故障的模式识别。为了解决时域统计参数对于轴承故障的多分类效果较差的问题,引入小波包分解(Wavelet packet decomposition,WPD)技术,提取振动信号各频带的能量系数构造特征向量,并采用Fisher比率法对特征向量进行优化选取;然后利用支持向量机(support vector machine,SVM)进行故障模式识别,并与小波包分解及时域统计参数的分类效果进行对比分析。结果表明:支持向量机是实现轴承故障模式识别的一
2022-07-01 15:25:55 331KB 工程技术 论文
1
包含matlab代码以及基于此代码的论文一篇。 代码主要实现对数据的多维特征提取,包括峰值裕度等多个时频域特征。然后将提取到的特征输入到BP神经网络中,从而将故障轴承数据与正常轴承数据分类。
【故障诊断分析】滚动轴承故障诊断系统含Matlab源码
2022-05-28 11:07:57 969KB
1
1、python程序 2、有数据集 3、里面进行了三种算法对比,遗传算法、粒子群算法和布谷鸟算法 4、有一篇类似论文
2022-05-16 21:05:39 3.45MB 支持向量机 算法 机器学习 人工智能
麻雀算法为2020年的新算法,这里用麻雀算法(SSA)优化支持向量机,并以滚动轴承故障诊断为例子,代码注释较全,适合新手,可以跑出来,本人亲自测试过,绝对可以。
2022-05-10 18:10:20 107KB 支持向量机 算法 机器学习 人工智能
1、python程序 2、利用CEEMDAN计算了多尺度熵MSE 3、有数据集可直接运行
2022-05-10 14:06:23 4.84MB 支持向量机 python 算法 机器学习
1、有完整原始数据 2、python程序 3、程序详细,可直接运行
基于振动信号的滚动轴承故障诊断; 毕设研究课题:根据轴承的振动序列数据来诊断轴承故障。 毕设研究课题:根据轴承的振动序列数据来诊断轴承故障。 毕设研究课题:根据轴承的振动序列数据来诊断轴承故障。 毕设研究课题:根据轴承的振动序列数据来诊断轴承故障。 毕设研究课题:根据轴承的振动序列数据来诊断轴承故障。 毕设研究课题:根据轴承的振动序列数据来诊断轴承故障。 毕设研究课题:根据轴承的振动序列数据来诊断轴承故障。 毕设研究课题:根据轴承的振动序列数据来诊断轴承故障。 毕设研究课题:根据轴承的振动序列数据来诊断轴承故障。 毕设研究课题:根据轴承的振动序列数据来诊断轴承故障。 毕设研究课题:根据轴承的振动序列数据来诊断轴承故障。 毕设研究课题:根据轴承的振动序列数据来诊断轴承故障。 毕设研究课题:根据轴承的振动序列数据来诊断轴承故障。 毕设研究课题:根据轴承的振动序列数据来诊断轴承故障。 毕设研究课题:根据轴承的振动序列数据来诊断轴承故障。 毕设研究课题:根据轴承的振动序列数据来诊断轴承故障。 毕设研究课题:根据轴承的振动序列数据来诊断轴承故障。
2022-05-06 18:06:01 436KB python 文档资料
基于深度学习的滚动轴承故障诊断方法(python代码) 轴承故障诊断时机械状态监测的热门研究方向,其算法的核心在于信号特征提取与模式分类两个部分。在轴承故障诊断领域,常见的特征提取算法有快速傅里叶变化,小波变换,经验模式分解以及信号的统计学特征等,常见的模式分类算法有支持向量机,BP 神经网络(也称为多层感知器),贝叶斯分类器以及最近邻分类器等。当下轴承故障诊断的研究热点是可以归结为 3 类:寻找更好的特征表达;寻找最适合的特征表达以及分类器的组合;以及发明新的传感器。
2022-05-03 19:03:47 34.86MB python 深度学习 综合资源 开发语言