激光雷达和毫米波雷达数据融合基于无迹卡尔曼滤波算法c++工程项目 SensorFusion-UKF 激光雷达和毫米波雷达数据融合基于无迹卡尔曼滤波算法c++工程项目 基于无迹卡尔曼滤波,改成ROS协议下的 #你需要配置ROS环境以及C++编译 Unscented Kalman Filter Project Starter Code Self-Driving Car Engineer Nanodegree Program Dependencies cmake >= v3.5 make >= v4.1 gcc/g++ >= v5.4 Basic Build Instructions Clone this repo. Make a build directory: mkdir build && cd build Compile: cmake .. && make Run it: ./UnscentedKF path/to/input.txt path/to/output.txt. You can find some sample inputs in 'data/'. e
2025-06-16 22:17:12 213KB
1
内容概要:本文探讨了基于非线性模型预测控制(NMPC)与近端策略优化(PPO)强化学习在无人船目标跟踪控制中的应用及其优劣对比。首先介绍了无人船在多个领域的广泛应用背景,随后详细阐述了NMPC通过建立非线性动力学模型实现高精度跟踪的方法,以及PPO通过试错学习方式优化控制策略的特点。接着从精度与稳定性、灵活性、计算复杂度等方面对两者进行了全面比较,并指出各自的优势和局限性。最后强调了Python源文件和Gym环境在实现这两种控制方法中的重要性,提供了相关文献和程序资源供进一步研究。 适合人群:从事无人船技术研发的研究人员、工程师及相关专业学生。 使用场景及目标:适用于希望深入了解无人船目标跟踪控制技术原理并进行实际项目开发的人群。目标是在不同应用场景下选择最合适的控制方法,提高无人船的性能。 其他说明:文中不仅涉及理论分析还包含了具体的Python实现代码,有助于读者更好地掌握相关技术细节。
2025-06-05 10:25:35 527KB
1
MPU6050模块是InvenSense公司推出的一款集成6自由度惯性测量单元(IMU),包含3轴加速度计和3轴陀螺仪。这个模块在物联网、无人机、机器人以及各种需要姿态检测的项目中广泛应用。卡尔曼滤波(Kalman Filter)是一种优化数据融合的算法,用于处理传感器数据中的噪声,提高测量精度。 MPU6050与Arduino的结合使用,可以实现精确的运动追踪和姿态估计。Arduino是一款开源电子原型平台,支持各种硬件扩展,方便开发者进行快速原型设计。通过Arduino IDE,我们可以编写控制MPU6050的代码,获取并处理其输出的加速度和角速度数据。 在提供的压缩包中,"串口MPU6050卡尔曼滤波6轴9轴资料汇总"可能包含了以下内容: 1. **源码**:这通常包括Arduino的C++代码,用于配置和读取MPU6050的数据,以及实现卡尔曼滤波器的算法。卡尔曼滤波器的代码会接收原始数据,通过一系列数学运算去除噪声,输出更准确的加速度和角速度值。 2. **上位机示例**:可能是一个桌面应用程序或网页应用,用于通过串口通信与Arduino交互,接收并显示MPU6050的数据。这种可视化工具有助于开发者理解传感器的实时性能,并对滤波效果进行评估。 3. **6轴和9轴资料**:MPU6050本身只能提供6轴数据(3轴加速度和3轴角速度)。9轴通常是指添加了一个磁力计(3轴),提供磁场方向信息,用于实现更全面的姿势估计。这部分资料可能包含了如何集成外部磁力计并与MPU6050协同工作的教程或代码。 4. **理论知识**:除了代码,资料包可能还包括关于卡尔曼滤波的基本原理、如何设置MPU6050的寄存器、以及如何解析和处理传感器数据等文档,帮助初学者理解整个系统的工作流程。 使用这些资源,你可以学习如何设置和控制MPU6050,以及如何利用卡尔曼滤波提升传感器数据的可靠性。在实际应用中,这可以帮助你构建更稳定、准确的运动控制系统,例如在无人机的飞行控制、机器人导航或VR设备中。同时,理解和掌握卡尔曼滤波对于任何涉及到传感器数据处理的项目都是极其有价值的技能。
2025-05-28 17:23:44 18.42MB arduino
1
OpenCV(开源计算机视觉库)是计算机视觉领域中一个强大的工具,它包含了众多用于图像处理、计算机视觉以及机器学习的函数。在这个主题中,“OpenCV人脸识别与目标追踪”涵盖了两个核心概念:人脸识别和目标追踪。 人脸识别是计算机视觉的一个重要分支,它的主要任务是识别和定位图像或视频流中的面部特征。OpenCV提供了多种方法来实现这一功能,包括Haar级联分类器、LBP(局部二值模式)特征和Dlib库等。Haar级联分类器是最常用的方法,通过预训练的级联分类器XML文件,可以检测到图像中的面部区域。而LBP则更关注局部纹理信息,适用于光照变化较大的环境。Dlib库则提供了更高级的人脸关键点检测算法,能够精确地标定眼睛、鼻子和嘴巴的位置。 目标追踪,另一方面,是指在连续的视频帧中跟踪特定对象。OpenCV提供了多种目标追踪算法,如KCF(Kernelized Correlation Filters)、CSRT(Constrast-sensitive Scale-invariant Feature Transform)、MOSSE(Minimum Output Sum of Squared Error)等。这些算法各有优势,例如,KCF以其快速和准确而著称,CSRT则在目标遮挡和形变时表现出良好的稳定性。 在实际应用中,人脸识别通常用于安全监控、身份验证或社交媒体分析等场景。目标追踪则广泛应用于视频监控、无人驾驶、运动分析等领域。理解并掌握这两种技术对于开发智能系统至关重要。 在OpenCV中,通常先通过人脸检测算法找到人脸,然后利用特征匹配或模板匹配等方法进行人脸识别。目标追踪则需要选择合适的追踪算法,初始化时标记要追踪的目标,之后算法会自动在后续帧中寻找并更新目标位置。 为了实现这些功能,开发者需要熟悉OpenCV的API接口,包括图像读取、处理和显示,以及各种算法的调用。同时,了解一些基本的图像处理概念,如灰度化、直方图均衡化、边缘检测等,也有助于更好地理解和优化这些算法。 在“OpenCV人脸识别与目标追踪”的压缩包中,可能包含了一些示例代码、预训练模型和教程资源,这些都可以帮助学习者深入理解和实践这两个主题。通过学习和实践这些内容,开发者不仅可以提升自己的OpenCV技能,还能为未来的人工智能和计算机视觉项目打下坚实的基础。
2025-05-27 12:10:37 1KB opencv 人工智能 人脸识别 目标跟踪
1
TLD目标跟踪算法是一种用于视频监控和计算机视觉中的智能目标跟踪技术。其核心思想是结合长期跟踪(Long-term tracking)、检测(Detection)和学习(Learning)三个部分,旨在实现在复杂场景下对目标对象的稳定追踪。 在TLD算法中,长期跟踪部件负责实时更新目标的位置,它是算法的主体部分,需要快速并且准确地反映目标的移动。然而,在长序列的视频中,由于光照变化、遮挡、目标外观变化等因素,长期跟踪很容易失效。因此,TLD算法引入了检测模块,当跟踪器失灵时,可以利用检测器来恢复目标的位置。检测器通常采用成熟的机器学习方法,例如基于深度学习的卷积神经网络,以处理不同外观的目标。 学习模块是TLD算法中最具特色的一环,它负责对跟踪和检测过程中发生的错误进行学习,并对策略进行实时调整。当检测器成功找到目标而跟踪器失败时,学习模块将利用这一信息来更新跟踪器的参数,减少未来的错误。这样,TLD算法不断在错误中学习,从而提高了在长时间序列跟踪中的鲁棒性。 TLD算法的matlab版本和C++版本的源码为研究者和开发者提供了便捷的途径,他们可以直接利用这些源码进行实验和开发,对目标跟踪算法进行测试和改进。matlab版本的源码适用于快速原型开发和算法验证,而C++版本则更适用于性能要求高,需要在实际项目中部署的场景。 TLD算法的应用场景非常广泛,包括但不限于智能视频监控、自动驾驶汽车、人机交互、机器人导航等领域。在这些应用中,目标跟踪的准确性和稳定性是至关重要的。通过TLD算法,可以实现对单个或多个目标的持续追踪,并在复杂的动态环境中保持高准确率。 随着技术的发展,TLD算法也在不断地进化。研究者们正在通过增加更多的学习机制,比如强化学习和迁移学习,来进一步增强算法对不同场景的适应能力。此外,为了应对大规模数据集和实时处理的要求,TLD算法也在不断地优化其算法效率和准确性。 TLD目标跟踪算法作为一种结合了传统跟踪技术与现代机器学习方法的复合型算法,其源码的公开为学术界和工业界提供了宝贵的研究资源,对推动目标跟踪技术的发展起到了积极作用。
2025-05-16 16:11:53 40.23MB 目标跟踪 TLD目标跟踪 matlab
1
基于领航跟随法的切换拓扑编队控制:可调节智能体数量的Matlab程序实现,6 编队控制matlab程序 切拓扑 基于领航跟随法目标跟踪,可调节智能体数量 ,核心关键词:编队控制; MATLAB程序; 切换拓扑; 领航跟随法; 目标跟踪; 可调节智能体数量。,基于领航跟随法的切换拓扑编队控制Matlab程序,可调智能体数量目标跟踪 在现代控制系统中,多智能体编队控制是一个重要的研究领域,特别是在动态环境下的目标跟踪和任务执行中。本项研究的核心内容是实现基于领航跟随法的切换拓扑编队控制,并通过Matlab程序来模拟和分析智能体的动态行为。领航跟随法是一种多智能体系统中常见且有效的协调控制策略,它允许智能体之间通过信息的交换来保持编队队形,并达到共同的跟踪目标。 在本研究中,程序的设计考虑了可调节的智能体数量,这一功能对于需要动态适应环境变化的系统尤为重要。通过编写和实现Matlab程序,研究者们可以对不同数量的智能体在编队控制中的行为进行模拟和预测。这不仅有助于理解智能体之间的相互作用,还能够优化整个系统的性能。 切换拓扑是指在编队控制过程中,由于环境变化或智能体自身状态的改变,编队的结构可能会发生变化。这种变化要求控制系统能够灵活适应,以保持编队的有效性和稳定性。本研究中的Matlab程序实现了这一动态适应机制,使得智能体可以在编队结构改变时,迅速调整其行为和位置,以适应新的编队形态。 目标跟踪功能是指系统能够根据设定的目标位置,控制智能体进行移动,最终实现对目标的有效跟踪。本研究将目标跟踪与编队控制相结合,展示了如何通过领航跟随法实现智能体的自主协同运动,从而达到对移动目标的有效跟踪。 在具体的程序实现方面,研究者们创建了多个文档和文本文件,详细记录了程序的构建过程和研究成果。这些文件包括了对编队控制理论的深入分析,以及Matlab程序的设计思想和实现方法。图像文件可能提供了直观的视觉展示,辅助说明了程序运行的结果。 这项研究展示了在多智能体系统中,如何通过领航跟随法实现动态和灵活的编队控制,同时保证了智能体数量的可调节性以及对动态目标的高效跟踪。这些成果不仅在理论上有重要的贡献,而且在实际应用中,如无人系统协同、环境监测和资源勘探等领域具有广泛的应用前景。
2025-05-14 22:03:57 683KB
1
YOLOv5与DeepSORT是两个在计算机视觉领域广泛应用的算法,主要负责目标检测和多目标跟踪。在本文中,我们将深入探讨这两个技术以及如何将它们结合用于汽车和行人的多目标跟踪,这对于智能交通系统、自动驾驶车辆以及安全监控等领域具有重要意义。 **YOLOv5详解** YOLO(You Only Look Once)是一种实时的目标检测系统,以其高效和准确而著称。YOLOv5是该系列的最新版本,由Joseph Redmon等人开发,经过多次迭代优化,性能更加强大。它采用了一种单阶段的检测方法,直接从输入图像中预测边界框和类别概率,大大减少了计算时间。YOLOv5引入了以下关键改进: 1. **数据增强**:使用HFlip、Resize、ColorJitter等技术,增强了模型的泛化能力。 2. **模型结构**:采用了更高效的neck设计,如Path Aggregation Network (PANet) 和 Fused Scale金字塔,提高特征融合和多尺度信息利用。 3. **损失函数**:优化了损失函数,如CIoU(Complete IoU),改进了边界框的预测精度。 4. **权重初始化**:使用更好的预训练模型,如COCO数据集,加速收敛。 **DeepSORT详解** DeepSORT是一种基于卡尔曼滤波器和匈牙利算法的多目标跟踪框架。它结合了深度学习模型(如ReID)来估计目标的外观特征,并利用这些特征进行跨帧匹配。其核心组件包括: 1. **特征提取**:通过一个预训练的深度网络(如ResNet或MobileNet)提取目标的外观特征。 2. **卡尔曼滤波**:对目标的运动状态进行预测和更新,以处理目标的短暂遮挡和运动模糊。 3. **相似度度量**:使用马氏距离计算不同帧间目标特征的相似性。 4. **匈牙利算法**:解决分配问题,确定最佳的一一对应关系,确保跟踪的稳定性。 **YOLOv5与DeepSORT结合** 将YOLOv5和DeepSORT结合,可以实现端到端的汽车行人多目标跟踪。YOLOv5首先检测出每一帧中的目标,然后DeepSORT负责在连续帧之间进行目标跟踪。具体流程如下: 1. **目标检测**:YOLOv5模型在输入图像上进行前向传播,输出每个目标的边界框、类别和置信度。 2. **特征提取**:DeepSORT从YOLOv5的输出中提取目标的特征表示。 3. **跟踪初始化**:使用卡尔曼滤波器预测上一帧的目标状态,并为新检测到的目标分配ID。 4. **匹配过程**:根据马氏距离计算当前帧与上一帧目标特征的相似度,使用匈牙利算法进行匹配。 5. **状态更新**:更新匹配成功的目标状态,对未匹配的目标创建新的跟踪。 6. **重复步骤2-5**:对于视频的每一帧,重复以上过程,实现持续的目标跟踪。 这种结合方法在实际应用中表现出了优秀的跟踪性能,尤其在目标密集、遮挡频繁的场景下,能够有效地维持目标的连续性,实现精确的计数和追踪。 总结来说,YOLOv5和DeepSORT的结合为汽车行人多目标跟踪提供了一个强大且实用的解决方案,不仅适用于学术研究,也在实际项目如毕设、课设中大有裨益。通过理解并掌握这两个算法的工作原理和结合方式,开发者可以构建出高效的目标跟踪系统,满足各种复杂场景的需求。
2025-05-12 10:53:24 245.04MB 目标跟踪
1
卡尔曼滤波系列算法在轨迹跟踪与GPS数据处理中的应用:野值剔除与状态估计预测,卡尔曼滤波做轨迹跟踪 鲁棒卡尔曼滤波做野值剔除后的预测 扩展卡尔曼滤波对GPS数据进行状态估计滤波 ,核心关键词:卡尔曼滤波; 轨迹跟踪; 野值剔除预测; GPS数据状态估计滤波。,卡尔曼滤波技术:轨迹跟踪、野值剔除预测与GPS状态估计滤波 卡尔曼滤波技术是现代控制理论中一种非常重要的算法,特别是在处理线性动态系统的状态估计问题上显示出其独到的优越性。在轨迹跟踪和GPS数据处理领域,卡尔曼滤波技术的应用尤为广泛,它能够有效地结合系统模型和观测数据,进行状态估计和预测。在轨迹跟踪中,卡尔曼滤波可以对目标的运动状态进行实时跟踪,并预测其未来的位置,这对于自动驾驶、机器人导航以及各种监测系统来说具有重大的意义。 随着技术的发展,传统的一维卡尔曼滤波算法已不能满足所有场景的需求,因此出现了鲁棒卡尔曼滤波和扩展卡尔曼滤波。鲁棒卡尔曼滤波对系统模型的不准确性或者环境噪声的不确定性具有更强的适应性,它能够剔除数据中的野值,保证状态估计的准确性。而扩展卡尔曼滤波(EKF)则是针对非线性系统状态估计而设计的,它通过线性化非线性系统模型的方式,使得卡尔曼滤波的框架能够应用于更广泛的场合,比如GPS数据的滤波处理。 在实际应用中,卡尔曼滤波算法通常需要依赖于对系统的精确建模,包括系统动态模型和观测模型。系统动态模型描述了系统状态如何随时间演变,而观测模型则描述了系统状态和观测值之间的关系。卡尔曼滤波通过不断迭代执行两个主要步骤:预测和更新,来实现最优的状态估计。在预测步骤中,算法使用系统动态模型来预测下一时刻的状态,而在更新步骤中,算法结合新的观测数据来校正预测值,从而获得更准确的估计。 在处理GPS数据时,卡尔曼滤波技术同样发挥着至关重要的作用。由于GPS信号易受多路径效应、大气延迟等因素的影响,接收到的GPS数据往往包含有较大的误差。利用扩展卡尔曼滤波技术,可以对这些误差进行有效的估计和校正,从而提高GPS定位的精度。这对于车辆导航、航空运输、测绘和各种地理信息系统来说是至关重要的。 除了在轨迹跟踪和GPS数据处理中的应用,卡尔曼滤波技术还被广泛应用于信号处理、经济学、通信系统以及生物医学工程等多个领域。随着科技的进步和算法的不断改进,未来卡尔曼滤波技术有望在更多的领域和更复杂的系统中发挥其独特的作用。 卡尔曼滤波技术以其强大的预测和估计能力,在轨迹跟踪、GPS数据处理等众多领域内都发挥着不可替代的作用。随着算法的不断发展和完善,卡尔曼滤波技术将继续扩展其应用范围,为科技的进步提供有力的支撑。
2025-05-11 00:23:03 910KB
1
目标跟踪视频集.zip,红外小目标视频数据集, 可做目标跟踪算法测试,均为mp4视频文件,可直接进行目标跟踪使用 数据集名称:A dataset for infrared image dim-small aircraft target detection and tracking under ground / air background 参考的资源链接(图片数据集):https://www.scidb.cn/en/doi/10.11922/sciencedb.902
2025-05-05 23:50:02 30.61MB 目标跟踪 数据集
1
FairMOTVehicle A fork of FairMOT used to do vehicle MOT(multi-object tracking). You can refer to origin fork 车辆跟踪,效果如下,此测试未经过训练(Results of vehicle mot is as follows, the video seq has not been trained): 使用UA-DETRAC公开数据集训练FairMOT(Using UA-DETRAC as training dataset for vehicle tracking) UA_DETRAC是一个公开的车辆跟踪数据集, 共8万多张训练数据集,每一张图的每一辆车都经过了精心的标注。 训练方法(具体调用时,根据服务器目录, 修改自定义路径) (1). 使用gen_labels_detrac.py脚本
2025-04-27 12:48:47 20.01MB Python
1