为研究负载对无线电能传输系统传输性能的影响,建立了基于磁耦合谐振的无线电能传输系统的电路模型,利用电路耦合理论推导出在不同距离上为抑制频率分裂现象所需的最小负载以及当接收功率最大时的最佳匹配负载计算模型,且最佳匹配负载总是大于最小负载。仿真结果表明,对于不同的耦合系数,增大负载可以抑制频率分裂现象的出现;当接收功率达到最大值时,最佳匹配负载会因耦合系数的不同而改变,且总会有一个最佳匹配负载与之对应。这一结论为无线电能传输系统的负载选择提供了理论指导。
1
分析了4种磁耦合谐振式无线电能传输拓扑结构模型的输出功率、传输效率与频率、负载、距离的关系,得出结论:发射线圈电感电容串联、接收线圈电感电容并联的拓扑结构更适用于低频率、大负载、远距离的情况;发射线圈和接收线圈电感电容均串联的拓扑结构更适用于较近距离、较高频率、较小负载的情况。通过Matlab仿真得出在相同参数下4种拓扑结构模型的输出电压、电流波形,验证了理论分析的正确性。
2022-05-29 11:28:45 290KB 行业研究
1
为了进一步揭示磁耦合谐振式无线电能传输(MCR-WPT)系统频率分裂现象的物理原理,并建立一套使得系统工作在最大传输功率状态的工作准则,提出了一套建模分析方法。首先根据基尔霍夫电压定律对MCR-WPT系统进行了时域建模,并通过矩阵计算得到了传输功率的解析表达式。然后基于振动理论,分析了传输功率的频率分裂现象,阐述并推导了系统的几个关键参数:系统固有频率、电路固有频率和共振频率。接着深入分析了系统固有频率和电路固有频率之间的关系,进一步揭示了频率分裂及系统共振的物理原理。最后,通过实验验证了该理论的有效性和正确性。
1
本文介绍了磁耦合谐振式无线电能传输技术的工作原理、基本结构,并且提出了几种提高效率的方法。设计了一种基于磁耦合谐振的无线充电实验装置,并试图在各模块优化的情况下,统筹各部分关系,使系统整体工作在最佳状态。主电路采用全桥逆变电路,控制电路采用PWM+PLL电路,谐振频率为76 kHz,实验证明效率可达90%以上。
1
介绍了一种以电感电容并联谐振(以下简称LC并联谐振)电路为核心的磁耦合谐振式无线电能传输装置的设计并对装置进行了测试及结果分析。装置由发射和接收两部分构成,发射部分由LC并联谐振回路和驱动电路组成;接收部分将线圈电磁感应产生的正弦波经过整流和滤波后输出直流电压。测试结果为:当两线圈间距为10 cm时能够达到34%的最大传输效率;当输入回路电流不大于1 A且保证负载LED灯不灭时,两线圈最大间距为52 cm。
2021-12-10 10:08:34 434KB 无线电能传输
1
该装置为无线电能传输系统。随着无线电充电技术的快速发展和生活推广,同时也在一些特殊的场合中发挥着特殊作用。该装置采用磁耦合谐振式无线电能传输方式,发射端采用mos管,电感电容的搭建,实现3点式正弦波振荡,把电压放大的同时通过线圈辐射电能。该系统采用12vDC,1000ma适配器为输入电源,通过发射模块和发射线圈,电能转化为磁能,后经过接收线圈和接收模块,点亮多盏LED灯。需要注意的是当接收线圈靠近发射线圈时,接收端的交流电的峰值会变大,从而反向击穿LED灯。作者制作的装置可在35-55CM处点亮1盏LED灯,在10-20CM处可点亮4盏LED灯。同时测试该装置效率时,在线圈相距10cm处,接收端串联20欧姆的纯负载。测试数据为适配器输入 电压为12.20V,电流为0.91A,输入功率为11.102W;示波器接收端交流电压输出峰值16V,即接收端功率为6.39W,效率为57.61% 。 附件内容包括:接收部分和发射部分原理图及PCB、参考文档。 无线电能传输接收原理图截图: 无线电能传输发射原理图截图:
2021-10-26 17:13:35 21.33MB 无线电能传输 电路方案
1
行业分类-外包设计-超声-磁耦合控制离子传递提高电极箔性能的腐蚀装置.zip
2021-09-11 18:04:33 503KB 行业分类-外包设计-超声-磁耦合
电动汽车无线充电的磁耦合结构综述.pdf
行业-电子政务-同步光电磁耦合仿生技术净化工业废气的装置及方法.zip
行业-电子政务-交错并联变换器的磁耦合电感器及其磁芯.zip