内容概要:本文介绍了使用MATLAB仿真复现四旋翼无人机ADRC姿态控制器的过程。文章首先阐述了四旋翼无人机的姿态模型、力矩方程和角运动方程,解释了这些数学模型如何描述无人机的姿态变化及其响应机制。接下来,重点介绍了ADRC控制器的设计思路,包括针对滚转、俯仰和偏航三个姿态角分别设计的ADRC控制器。通过MATLAB的Simulink工具,作者实现了无人机模型和控制器模型的搭建,并通过多次仿真实验验证了ADRC控制器的有效性和鲁棒性。文中还提供了一段简化的MATLAB代码示例,展示了仿真过程的关键步骤。 适合人群:对无人机控制系统感兴趣的科研人员、工程技术人员及高校相关专业学生。 使用场景及目标:适用于希望深入理解四旋翼无人机飞行动力学和先进控制算法的研究者和技术开发者。通过本文的学习,可以掌握ADRC控制器的设计方法及其在无人机姿态控制中的应用。 其他说明:本文不仅提供了理论分析,还包括详细的仿真操作指导,有助于读者从实践中加深对ADRC控制器的理解。
2025-09-28 21:43:15 267KB
1
在本文中,我们构造了[sc] A [s̄c̄] V-[sc] V [s̄c̄] A型张量 用QCD和研究X(4274)的质量和宽度 规则。 预测质量MX =(4.27±0.09)GeV JPC = 1 ++四夸克状态与实验非常吻合- LHCb合作获得的心理数据4273.3±8.3 + 17.2 MeV。 −3.6 宽度Γ(X(4274)→J /ψφ)的中心值= 47.9 MeV与LHCb的实验数据56±11 + 8 MeV高度吻合 -11 合作。 本工作支持将X(4274)分配为 J P C = 1 ++ [sc] A [s̄c̄] V-[sc] V [s̄c̄] A四夸克状态,在双夸克和反双夸克之间具有相对P波。 此外,我们获得了副产物JSC = 1+的[sc] A [s̄c̄] V-[sc] V [s̄c̄] A型四夸克态的质量。
2025-09-28 19:44:33 586KB Open Access
1
劲鲨X79 v1.0四通道主板通用BIOS,一共四个。其中4.BIN为合成的,刷入后修改只能用编程器。其他三个可以用软件通刷。
2025-09-27 22:04:18 8MB bios
1
Comsol四场耦合增透瓦斯抽采技术研究:动态渗透率与孔隙率变化模型及PDE模块应用,Comsol四场耦合增透瓦斯抽采技术:动态渗透率与孔隙率变化模型,涵盖热、流、固场与PDE模块综合应用,Comsol热-流-固四场耦合增透瓦斯抽采,包括动态渗透率、孔隙率变化模型,涉及pde模块等四个物理场,由于内容可复制源文件 ,核心关键词:Comsol热-流-固四场耦合;增透瓦斯抽采;动态渗透率;孔隙率变化模型;PDE模块。,Comsol模拟:热-流-固四场耦合下的瓦斯抽采与动态渗透 在当代能源开发与环境保护的双重需求下,瓦斯作为一种清洁能源和工业灾害气体的存在,其安全、高效地抽采问题一直受到广泛关注。Comsol四场耦合增透瓦斯抽采技术的研究,为这一领域带来了新的突破。该技术的核心在于研究动态渗透率与孔隙率的变化模型,并将此模型应用于Comsol软件中的偏微分方程(PDE)模块。通过这一综合应用,研究者能够模拟热、流、固三场在瓦斯抽采过程中的相互耦合效应,以达到提高瓦斯抽采效率和安全性的目的。 热场代表了瓦斯在地下的温度场,流场则涉及瓦斯的流动,固场指的是岩石或煤层的力学特性。三者之间的相互作用直接影响瓦斯的运移与分布。在传统的瓦斯抽采模型中,往往忽略了这些场之间的耦合作用,导致预测和控制瓦斯流动的能力有限。四场耦合模型的提出,正是为了解决这一问题,它能够更加精确地描述瓦斯抽采过程中的动态变化,预测可能出现的问题,并指导实际工程的实施。 动态渗透率和孔隙率变化模型是四场耦合模型的重要组成部分。渗透率的变化直接关系到瓦斯的渗透能力和流动路径,而孔隙率的改变则涉及到瓦斯储存空间的大小和分布。在瓦斯抽采过程中,由于煤层中瓦斯的释放,煤层的结构会经历显著变化,这些变化又会反过来影响瓦斯的渗透性和储存能力。因此,能够精确捕捉渗透率和孔隙率的动态变化对于瓦斯抽采具有重要意义。 PDE模块在Comsol软件中扮演了核心的角色,它允许用户构建和求解描述物理现象的偏微分方程。在四场耦合模型中,利用PDE模块可以将热、流、固场的方程耦合起来,以模拟和分析瓦斯抽采过程中的复杂现象。这不仅有助于理论研究,也为工程实践提供了强有力的数值仿真工具。 本次研究涉及的文件名称列表显示,相关文章涵盖了技术论文、技术博客、引言和具体的技术分析等不同的文体和内容。这表明该领域的研究是多方位的,既包括了深入的理论探讨,也包含了实际应用的案例分析和技术交流。同时,文件名称中提到“技术博客文章”和“在程序员社区的博客上发表”,说明研究成果被广泛分享和讨论,有助于推动瓦斯抽采技术在实际应用中的发展。 值得注意的是,技术文章中可能涉及的“ajax”标签,虽然与本次主题不直接相关,但这可能表明研究者在进行数据通信和动态内容更新方面采取了先进的技术手段,增强了技术交流的互动性和即时性。 Comsol四场耦合增透瓦斯抽采技术研究,结合了理论与实际、模型与仿真,为瓦斯抽采领域提供了全新的技术方案和研究思路。通过不断深入的研究与应用,该技术有望成为解决瓦斯安全高效抽采问题的重要手段,为煤矿安全生产和清洁能源的利用提供有力支持。
2025-09-27 16:34:00 3.61MB ajax
1
软件环境:推荐采用 Proteus 8.9 SP2 及以上仿真软件,Arduino IDE,虚拟串口 驱动软件 Virtual Serial Port Driver(VSPD)。 实现功能:使用Arduino UNO微控制器,搭建一个PC上位机远程湿度监测系统。 ·功能:Arduino UNO(Atmega328P)通过串行接口组件与上位机 PC 进行双向 通信,PC 上位机软件向 Arduino UNO 发送学生自己的学号,Arduino UNO 收到 后在 LCD 上显示学生的学号,并且向 PC 机发送当前的湿度值。PC 上位机软件 显示收到的湿度值。 LCD 第一行显示 ID:学号,第二行显示 RH: 湿度值% 自行编写 PC 上位机软件,实现 PC 与 Arduino 的双向数据传输及管理控制。编 程语言不限,推荐采用 C#。 上位机软件 GUI 界面需要有发送窗口显示发送的学号,有接收窗口显示接收到 的湿度值,GUI 界面上需要有串口选择和串口打开关闭功能。
2025-09-25 19:44:26 2.24MB
1
在嵌入式系统领域,随着技术的进步和应用场景的不断拓展,对于功能复杂、实时性要求高、且带有多路传感器和驱动器的设备的开发提出了新的挑战。为了应对这些挑战,设计者们需要构建一个全新的平台,以满足日益增长的性能和复杂性需求。本文将探讨嵌入式微系统msOS的诞生,这个系统是如何应运而生,以及在设计和实现过程中所经历的路径和遇到的挑战。 我们必须认识到电源类和控制类设备的重要性。这两类设备由于其功能的复杂性和对实时性的高要求,成为设计的关键点。它们通常需要集成多路传感器或驱动器,并且往往伴随着屏幕显示,以提供用户交互的界面。这就要求我们不能仅仅依赖传统的方法,而需要建立起一个能够承载这些设备核心需求的统一平台。 传统的MS3系统虽然在很多方面表现得简单易用,但其设计已不能满足现代嵌入式系统对高实时性和复杂交互的要求,特别是在面向对象的菜单界面编程方面。因此,为了提升系统的性能和扩展性,对系统进行彻底的改革成为当务之急。 在这个过程中,我们的团队,包括软件专家苏鹏,开始了对RTOS的探索。RTOS(实时操作系统)以其优秀的多任务处理能力和资源管理方式,成为了我们的主要目标。在选择了uC/OS-II、FreeRTOS和RT-Thread等几个有潜力的RTOS后,我们通过深思熟虑,最终决定采用uC/OS-II。这一决定不仅是基于它的资料丰富和用户群广泛,还因为它的开源特性使得我们可以根据自己的需要对其进行优化和定制。 为了使uC/OS-II更加适合新平台的要求,我们对其进行了大规模的精简和重构。这意味着我们将系统中不必要和冗余的部分剔除,保留核心功能,并且将其简化为两个任务:一个负责菜单界面,另一个负责业务逻辑。通过这种方式,新系统变得更加专注于实际需求,优化了内存使用,同时维护了任务切换的关键功能。 我们还探索了一种使用软中断的方法来实现双任务处理,这种技术在不使用RTOS的情况下提供了另一种可能性。虽然本文并未深入讨论新平台的后续实现和优化细节,但建立在RTOS基础上的架构已经逐渐成形。 文章的总结部分强调了从传统前后台系统到基于RTOS的多任务系统的过渡。在这一过程中,团队面临了诸多挑战,如系统设计的复杂性、资源管理、实时性要求等。但通过对uC/OS-II的定制和优化,一个更加适合复杂设备需求的操作系统核心被创建出来,这不仅提升了系统的实时性能,也大大降低了资源消耗,并为将来的功能扩展打下了坚实的基础。 这一过程清晰地展示了,在嵌入式软件开发中,系统设计和优化必须结合具体的应用场景。通过对系统架构的深思熟虑和对细节的精心打磨,才能开发出既高效又可靠的嵌入式系统。msOS的诞生正是这一理念的完美体现,它的成功不仅为功能复杂设备的开发提供了新的视角,也为整个行业树立了一个技术标杆。随着嵌入式系统的不断发展,我们有理由相信,类似的创新和改进将会不断涌现,推动技术的进步和应用的发展。
2025-09-25 12:28:57 169KB msos 嵌入式微系统 软件开发 嵌入式OS
1
基于自抗扰算法的四旋翼无人机姿态控制与轨迹控制研究(附参考资料),基于自抗扰算法的四旋翼无人机姿态控制与轨迹控制研究(附参考资料),基于自抗扰算法的四旋翼无人机姿态控制 本程序基于MATLAB中Simulink仿真和.m函数文件。 附有相关参考资料,方便加深对自抗扰算法的理解。 另有无人机的轨迹控制,编队飞行相关资料,可一并打包。 ,自抗扰算法; 四旋翼无人机姿态控制; MATLAB仿真; .m函数文件; 轨迹控制; 编队飞行,自抗扰算法驱动的四旋翼无人机姿态控制仿真程序:附轨迹编队飞行资料 本文研究了自抗扰算法在四旋翼无人机姿态控制与轨迹控制中的应用,重点分析了该算法在提高四旋翼无人机飞行稳定性、准确性和抗干扰能力方面的作用。通过MATLAB的Simulink仿真环境以及编写.m函数文件,研究者得以构建出四旋翼无人机的姿态控制模型,并对其进行了详细的仿真测试。研究表明,自抗扰算法在处理四旋翼无人机复杂动态过程中的外部干扰和内部参数变化具有较好的适应性和稳定性。 自抗扰算法是一种新型的控制策略,它结合了传统控制理论与现代控制理论的优点,能够自动补偿和抑制系统中的各种不确定性和干扰,提高控制系统的性能。在四旋翼无人机的姿态控制与轨迹控制中,自抗扰算法的核心优势在于能够实现快速准确的动态响应,以及对飞行器模型参数变化和外部环境干扰的鲁棒性。 MATLAB中的Simulink是一个强大的仿真工具,它允许用户通过直观的图形界面搭建复杂的动态系统模型,并进行仿真和分析。在本研究中,Simulink被用来模拟四旋翼无人机的姿态控制过程,并通过.m函数文件实现自抗扰算法的程序化控制。这样不仅提高了仿真效率,还便于对控制算法进行调整和优化。 四旋翼无人机的轨迹控制是另一个重要的研究方向。它关注的是如何设计控制算法使得无人机能够按照预定的轨迹进行飞行。本研究中不仅包含了姿态控制的内容,还扩展到了轨迹控制,甚至编队飞行的相关资料,提供了对于四旋翼无人机飞行控制的全面认识。编队飞行的研究对于无人机群协同作战、救援任务等具有重要的应用价值。 通过本研究提供的技术摘要、分析报告和仿真结果,研究者和工程师可以更深入地理解自抗扰算法在四旋翼无人机控制中的应用,并通过附带的参考资料进一步探索和完善相关理论和技术。这项研究不仅推动了四旋翼无人机飞行控制技术的发展,也为未来无人机在多个领域中的应用开辟了新的可能性。
2025-09-24 10:24:55 6.51MB
1
mmc四端配电网pscad 张北柔直实际工程pscad仿真 PSCAD直流电网,基于MMC变器的柔性直流输电PSCAD仿真 500kV 4端 200子模块,有环流抑制控制,子模块均压控制 还有500kV高压混合型直流断路器模型(DCCB) PSCAD EMTDC柔性直流输电学习必备 随着电力电子技术的发展,柔性直流输电(VSC-HVDC)技术在电力系统中的应用越来越广泛。本文将针对基于模块化多电平变换器(MMC)的四端配电网在PSCAD仿真中的应用进行深入分析。 模块化多电平变换器(MMC)作为柔性直流输电的核心设备,因其模块化设计、易于扩展、可灵活控制等优势,特别适用于高电压大容量的输电场景。在四端配电网中,通过合理配置MMC变器,可以有效提高电网的可靠性与灵活性。PSCAD/EMTDC作为一种专业的电力系统仿真软件,能够提供准确的模型和算法,用于模拟直流电网和柔性直流输电系统的行为。 在本次分析的张北柔直实际工程案例中,采用的是一套500kV的四端配电网,包含200个子模块。通过PSCAD仿真,可以对该系统的动态性能、稳定性以及控制策略进行详细的验证。四端配电网模型不仅需要考虑基本的电气参数和运行方式,还需要结合环流抑制控制以及子模块的均压控制策略,以保证系统的高效稳定运行。 在仿真过程中,不仅要考虑 MMC变器的运行特性,还需要关注高压混合型直流断路器模型(DCCB)的应用。DCCB作为故障清除的关键设备,其设计和应用对于保障直流电网的安全运行至关重要。通过PSCAD仿真,可以对DCCB的响应时间和动作特性进行分析,评估其在不同工况下的性能。 除了硬件设备的模型构建,仿真分析还包括对控制系统的模拟。在柔性直流输电系统中,控制策略通常包括功率控制、电压控制和频率控制等。通过PSCAD的仿真环境,可以搭建控制系统的模型,测试在不同运行条件下的响应速度和稳定性,确保系统在各种情况下的可靠性和可控性。 此外,文中提到的“四端配电网与仿真实”文件,可能涉及到配电网的结构、潮流分布、故障分析以及系统保护策略等方面的内容。而“仿真在四端配电网中的柔性直流输电探索本文”则可能针对仿真技术在柔性直流输电系统中的应用进行了详细的探讨。 图片文件“2.jpg”、“1.jpg”和“3.jpg”可能是实际工程的布局图、仿真模型图或者是仿真结果的图表展示,这些图像资料对于理解和分析工程案例具有重要作用。而“柔性直流输电技术在现代电力系统中起到了重要”可能是一篇描述柔性直流输电技术在现代电力系统中应用的文章,该技术不仅提高了输电效率,还有助于电网稳定性和经济性的提升。 本文通过对基于MMC变器的柔性直流输电系统在PSCAD软件中的仿真分析,展现了当前柔性直流输电技术在实际工程应用中的一系列核心技术和解决方案。通过深入研究,不仅有助于提高电力系统的运行效率和稳定性,也为未来电力系统的设计和管理提供了重要的参考和指导。
2025-09-23 17:10:11 292KB
1
【四路循迹技术详解】 四路循迹技术是一种在机器人或智能小车领域常见的路径跟踪方法,主要用于使车辆能够自主地沿着预先设定的黑色线条或其他颜色标记的路径行驶。这种技术广泛应用于自动扫地机器人、教育机器人以及各种竞赛用的机器人设计中。 在"四路循迹资料.rar"这个压缩包中,包含了关于四路循迹系统的详细信息,包括原理图和YL-70四路循迹模块的相关资料。以下是对这些关键知识点的详细解析: 1. **传感器选择与布局**:四路循迹通常使用四个红外反射传感器,分别布置在车辆底部的前、后和两侧,以便于检测线条的存在。这些传感器能通过发射红外光束并接收反射回来的信号来判断车辆与线条的距离和相对位置。 2. **红外反射原理**:红外传感器工作时,它会发射红外光,当遇到不同颜色或材质的边界(如黑色线条与白色背景的对比)时,反射回来的光线强度会变化。传感器通过检测反射光强的变化来识别线条的存在和位置。 3. **信号处理**:传感器接收到的信号需要经过微控制器(如Arduino或STM32等)进行处理。微控制器会分析每个传感器的读数,并根据这些数据计算出车辆相对于路径的偏移量。 4. **PID控制算法**:为了精确控制车辆的行驶方向,系统通常会采用PID(比例-积分-微分)控制算法。PID控制器通过不断调整电机转速来纠正车辆的偏移,确保其始终沿着线条行驶。 5. **YL-70四路循迹模块**:YL-70是一种常见的四路循迹模块,集成了四个红外传感器和必要的信号处理电路。它可以直接与微控制器接口,提供简洁的数字信号输出,简化了硬件设计和编程。 6. **硬件设计与原理图**:压缩包中的“原理图”文件提供了四路循迹系统的电路设计细节,包括传感器、微控制器、电机驱动和其他电子元件的连接方式。理解原理图有助于开发者了解系统的工作流程并进行硬件调试。 7. **软件实现**:虽然未提供具体的代码,但实现四路循迹通常需要编写微控制器的控制程序,这部分可能涉及到传感器数据的读取、PID控制算法的实现以及电机控制指令的发送。 8. **调试与优化**:实际应用中,可能需要根据环境条件(如光照、线路颜色、表面材质等)调整传感器灵敏度和PID参数,以达到最佳的循迹效果。 总结来说,四路循迹技术涉及硬件设计、传感器应用、信号处理和控制算法等多个方面,而"四路循迹资料.rar"提供的资源可以帮助开发者深入了解这一技术并进行实践。通过对YL-70四路循迹模块的研究,可以快速构建一个功能完备的循迹系统,为机器人或智能小车的自主导航提供可靠的解决方案。
2025-09-23 11:29:08 25.69MB
1
第三章 载波频偏估计算法的研究 相干检测通信系统接收机的特点是利用一个本振激光器(LO)与接收到的 载波调制信号进行相干以获得基带信号。理论上,要求本振激光器的振荡频率与 信号载波的频率完全相同。但实际上,光通信系统中激光器的振荡频率高达几百 THz,在目前的光器件的工艺条件下,两个激光器的振荡频率与我们所预先设置 的振荡频率都不可能完全吻合,即每个激光器都肯定有一定量的振荡频率偏移。 假设每个激光器的可能的振荡频偏的范围是[-X,+X]Hz,则两个激光器的相对频 偏(载波频偏)的范围就可能为[.2)(’+2X]Hz。载波频偏估计算法的目的就是通 过对离散数字基带信号的处理,去除载波频偏对调相系统中符号相位的影响。 目前应用于相干光传输系统接收机中的前馈式全数字载波频偏估计算法,主 要有两种,分别为四次方频偏估计算法和基于预判决的频偏估计算法。本章详述 了这两种算法的原理、算法参数,给出了这两种算法在l 12Gb/s PM.DQPSK系 统中的仿真结果。针对目前硬件实现所面临的器件处理速率不足这一重要问题, 设计了这两种算法的并行处理结构的方案。此外,还设计了基于预判决的频偏估 计算法的初始化方案。最后,横向比较了现有的几种载波频偏估计算法。 3.1四次方频偏估计算法 3.1.1四次方频偏估计算法的原理 四次方频偏估计算法【lI】是根据M次方频偏估计算法而来的。M次方频偏估 计算法,是应用于相位调制相干接收系统中,去除本地振荡和信号载波之间的频 率偏差对调相信号的基带信号相位的损伤。之所以叫做M次方,是因为算法通 过对复数符号进行M次方运算,从而利用调制信息相位的M倍为一个恒定不变 的相位值这一结论,去除调制信息相位并进行频偏估计。宅E(D)QPS'K调制方式 下,M=4,M次方频偏估计算法就可以称为“四次方频偏估计算法"。该算法是 一种前馈式频偏估计算法,无需反馈环路。 四次方频偏估计算法的原理图如图3.1所示。 图3-1四次方频偏估计算法原理框图 14
2025-09-23 10:44:55 2.69MB 光纤,信号
1