使用多种方法完成MNIST分类任务 Python 3.6 Pytorch 1.0 Scikit-learn 0.21 无需下载数据直接跑,代码自动下载 逻辑回归 Logistic Regression 多层感知机 MLP K近邻 KNN 支持向量机 SVM 卷积神经网络 CNN 循环神经网络 RNN
2022-06-19 17:05:18 1.04MB SVM CNN RNN KNN
人工智能-项目实践-文本分类-CNN-RNN中文文本分类,基于TensorFlow 使用卷积神经网络以及循环神经网络进行中文文本分类 CNN做句子分类的论文可以参看: Convolutional Neural Networks for Sentence Classification 以及字符级CNN的论文:Character-level Convolutional Networks for Text Classification 本文是基于TensorFlow在中文数据集上的简化实现,使用了字符级CNN和RNN对中文文本进行分类,达到了较好的效果。 文中所使用的Conv1D与论文中有些不同,详细参考官方文档:tf.nn.conv1d
2022-05-13 09:08:46 410KB 文档资料 cnn rnn tensorflow
人工神经网络、CNN、RNN、lstm
2022-05-06 18:47:41 508B 深度学习 cnn 人工智能 神经网络
1
分享 BP CNN RNN LSTM 算法核心点: 反向传播算法的核心就是 梯度下降 + 链式法则求偏导 所谓神经网络的训练或者是学习,其主要目的在于通过学习算法得到神经网络解决指定问题所需的参数, 这里的参数包括各层神经元之间的连接权重以及偏置等
2022-05-06 18:42:07 1.09MB BP CNN RNN LSTM
1
预测模型调研文档 预测模型调研文档(RNN、CNN、LSTM模型)
2022-04-19 17:05:35 1.19MB lstm cnn rnn 深度学习
1
在本文中,我们提出了一个双重模型,考虑了脑电特征图的两种不同表示:1)基于序列的脑电频带功率表示,2)基于图像的特征向量表示。我们还提出了一种基于图像模型显著性分析的信息组合方法,以促进两个模型部分的联合学习。该模型已在四个公开可用的数据集上进行了评估:SEED-IV、SEED、DEAP和MPED。 在本文中,我们提出了一个新的框架,旨在估计情绪的脑电图。该模型由一种双重方法组成,该方法通过层次RNN考虑脑电通道之间的空间关系,通过CNN考虑DL表示。所提出的方法在三个数据集上显示了很好的结果。
2022-04-08 17:06:39 9.45MB cnn rnn 神经网络 深度学习
这篇论文的思路特别好: 我们提出了一种用于脑电情感识别的端到端深度学习方法。该神经网络综合考虑了脑电信号的空间信息、时间信息和注意力信息。将CNN,RNN和通道注意力机制(channel-wise attention)和扩展自我注意力机制(self-attention mechanisms)混合起来,同时通过通过注意力机制计算出各个通道权重,筛选出更有价值的通道。同时采用DE作为频域特征,结合时域特征和空间特征三大特征相融合考虑。模型方面:CNN+RNN(CNN-RNN)、通道性注意机制+CNN+RNN(A-CNN-RNN)和CNN+RNN+扩展自我注意机制(CNN-RNN-A)、连续卷积神经网络(Conti-CNN)、图卷积神经网络(GCNN)和卷积复发注意力模型(CRAM)。介绍了六种深度学习方法和两种传统方法进行比较,六大模型相互对比,在DEAP数据库的效价和觉醒分类任务中,平均情绪识别准确率分别为92.74%和93.14%!希望大家能好好理解阅读。 我们将通道性注意整合到CNN中,CNN可以提取空间注意特征,通道性注意可以提取通道间的注意信息。
2022-04-06 03:12:02 20.97MB cnn rnn 人工智能 深度学习
包含深度学习基本原理、网络搭建、优化方案、CNN、RNN网络的所有基本知识,适合新手小白进行知识梳理。
2022-02-17 09:11:58 5.7MB 深度学习 网络 cnn rnn
1
脑电情绪识别 HSE计算机科学学生项目 作者:Soboleva Natalia和Glazkova Ekaterina 脑电信号的准确分类可以为医学研究提供解决方案,以在早期阶段检测异常脑部行为以对其进行威胁。 在这项研究中,我们从另一个角度来看这个任务-情绪识别。 我们设计了卷积神经网络和递归神经网络的联合,使用自动编码器来压缩数据的高维数。 当前项目包括EEG数据处理,并使用AutoEncoder + CNN + RNN进行卷积 前处理 伪影-这是所有非脑源记录的活动的术语。 伪影可分为两类:生理伪影(来自大脑其他部位的虹膜,例如,身体)和外部生理伪影(例如,技术设备的北极)。 为了提取脑电图观察的最重要特征,必须进行预处理。 为了进行数据处理和可视化, 选择了用于人类神经生理数据(包括EEG)的开源Python软件。 在这一领域,有两种主要的最新方法可以处理EEG信号:小波变换和
2022-01-17 14:22:58 3.3MB JupyterNotebook
1
说明 本文是方法记录,不是完整的项目过程(在我Jupyter上,数据前期预处理部分懒得搬了),也没有调参追求准确度(家里电脑跑不动)。 参考任务来源于Kaggle,地址:电影评论情感分类 本文参考了不同的资料来源,包括斯坦福CS224N的课程资料,网上博客,Keras官方文档等 任务核心部分 1.单词表示 1.1 理论部分 对大部分(或者所有)NLP任务,第一步都应该是如何将单词表示成符合模型所需要的输入。最直接的思路就是将单词(符号)变为词向量。 词向量的表示方法: one-hot 编码:想法直接,但过于稀疏,且词与词之间正交,无法衡量词之间的相似度 基于矩阵分解的方法:比如不同词窗的矩阵,
2021-12-05 23:21:52 131KB dd ed IN
1