COMSOL中的多孔介质模拟:利用MATLAB代码随机分布的二维三维球圆模型生成算法打包及功能详解,利用COMSOL与MATLAB代码实现的随机分布球-圆模型:二维三维多孔介质模拟程序包,COMSOL with MATLAB代码随机分布球 圆模型及代码。 包含二维三维,打包。 用于模拟多孔介质 二维COMSOL with MATLAB 接口代码 多孔介质生成 以及 互不相交小球生成程序 说明:本模型可以生成固定数目的互不相交的随机小球;也可以生成随机孔隙模型 一、若要生成固定数目的小球,则在修改小球个数count的同时,将n改为1 二、若要生成随机孔隙模型,则将count尽量调大,保证能生成足够多的小球 三维COMSOL with MATLAB代码:随机分布小球模型 功能: 1、本模型可以生成固定小球数量以及固定孔隙率的随机分布独立小球模型 2、小球半径服从正态分布,需要给定半径均值和标准差。 2、若要生成固定小球数量模型,则更改countsph,并将孔隙率n改为1 3、若要生成固定孔隙率模型,则更改孔隙率n,并将countsph改为一个极大值1e6. ,核心关键词: COMS
2025-11-04 20:20:35 3.4MB 数据结构
1
内容概要:本文围绕基于最优控制理论的固定翼飞机着陆控制器设计展开研究,重点利用Matlab实现相关算法仿真。研究结合最优控制方法,对固定翼飞机在着陆过程中的动力学特性进行建模与控制策略设计,旨在提高着陆精度与飞行安全性。文中详细阐述了控制器的设计流程,包括系统建模、性能指标构建、约束条件处理以及优化求解过程,并通过Matlab代码实现仿真验证,展示了控制器在实际飞行场景中的有效性与鲁棒性。此外,文档还列举了多个相关科研方向和技术应用实例,涵盖无人机控制、模型预测控制(MPC)、非线性控制、路径规划、信号处理等多个【固定翼飞机】基于最优控制的固定翼飞机着陆控制器设计研究(Matlab代码实现)领域,体现出较强的工程实践与科研参考价值。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的航空航天工程、自动化、控制科学与工程等专业的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于学习和掌握最优控制在飞行器着陆控制中的应用;②为开展类似航空器控制系统设计提供算法实现与仿真范例;③辅助科研项目开发,提升控制算法设计与仿真能力; 阅读建议:建议读者结合Matlab代码与理论推导同步学习,重点关注控制器设计逻辑与仿真结果分析,同时可参考文中提供的其他研究案例拓展技术视野。
2025-11-04 10:03:59 71KB 最优控制 Matlab代码实现
1
内容概要:本文档提供了基于经验模态分解(EMD)、核主成分分析(KPCA)和长短期记忆网络(LSTM)的多维时间序列预测MATLAB代码实现。具体应用案例为北半球光伏功率预测,涉及的数据集包含太阳辐射度、气温、气压和大气湿度四个输入特征,以及光伏功率作为输出预测。文档详细介绍了从数据加载与预处理到EMD和KPCA处理,再到LSTM模型训练与预测的具体步骤,并进行了EMD-LSTM、EMD-KPCA-LSTM和纯LSTM模型的对比分析。此外,还强调了代码的注释清晰度和调试便利性,确保用户能够顺利运行和理解整个流程。 适用人群:适用于具有一定MATLAB编程基础和技术背景的研究人员、工程师或学生,特别是那些对时间序列预测、机器学习和光伏功率预测感兴趣的群体。 使用场景及目标:① 使用EMD、KPCA和LSTM组合模型进行多维时间序列预测;② 对比不同模型的效果,选择最优模型;③ 掌握MATLAB环境下复杂模型的构建和调优方法。 其他说明:代码已验证可行,支持本地EXCEL数据读取,附带详细的“说明”文件帮助用户快速上手。建议用户在实践中结合实际需求调整参数和模型配置,以获得最佳预测效果。
2025-11-01 16:52:20 749KB
1
基于深度强化学习(DRL)的DQN路径规划算法及其在MATLAB中的实现。DQN算法结合了深度学习和强化学习,能够在复杂的状态和动作空间中找到最优路径。文中不仅提供了完整的MATLAB代码实现,还包括了详细的代码注释和交互式可视化界面,使用户能直观地观察和理解算法的学习过程。此外,代码支持自定义地图,便于不同应用场景的需求。 适合人群:对深度强化学习感兴趣的研究人员和技术爱好者,尤其是希望深入了解DQN算法及其实际应用的人群。 使用场景及目标:适用于研究和开发智能路径规划系统,特别是在机器人导航、自动驾驶等领域。通过学习本文提供的代码和理论,读者可以掌握DQN算法的工作原理,并将其应用于各种迷宫求解和其他路径规划任务。 其他说明:为了确保算法的有效性和稳定性,文中提到了一些关键点,如网络结构的选择、超参数的优化、环境建模和奖励函数的设计等。这些因素对于提高算法性能至关重要,因此在实际应用中需要特别注意。
2025-10-29 21:18:17 480KB
1
"基于遗传算法与蚁群算法的多配送中心车辆路径优化研究:可调整配送中心数目与车辆载重率的MATLAB代码实现",遗传算法多配送中心车辆路径优化,蚁群算法多配送中心车辆路径优化,多个配送中心,多中心配送mdvrptw.带时间窗的多配送中心车辆路径优化。 可修改配送中心数目。 多配送中心车辆路径 [1]多配送中心[2]带有车辆载重率的计算[3]matlab代码数据可及时修改。 ,遗传算法; 蚁群算法; 多配送中心; 车辆路径优化; 时间窗; 载重率计算; MATLAB代码。,多中心车辆路径优化:考虑时间窗与载重率计算
2025-10-28 17:59:08 1.08MB
1
内容概要:本文档提供了基于经验模态分解(EMD)、核主成分分析(KPCA)与长短期记忆网络(LSTM)的组合模型,用于北半球光伏功率的多维时间序列预测。文档详细介绍了从数据加载与预处理到模型训练与预测的具体步骤,并对比了LSTM、EMD-LSTM和EMD-KPCA-LSTM三种模型的效果。代码支持读取本地EXCEL数据,适用于多种时间序列预测任务,如电力负荷、风速、光伏功率等。文中还强调了代码的注释清晰,便于理解和调试。 适用人群:具备MATLAB编程基础的研究人员和技术人员,特别是从事时间序列预测、能源数据分析领域的专业人士。 使用场景及目标:① 使用EMD、KPCA和LSTM组合模型进行多维时间序列预测;② 对比不同模型的预测效果,选择最优模型;③ 处理和分析光伏功率等时间序列数据。 其他说明:代码已验证,确保原始程序运行正常。建议在运行前仔细阅读程序包中的‘说明’文件,了解数据准备、模型参数设置及运行环境要求。
2025-10-28 11:11:56 713KB
1
主动配电网两阶段鲁棒恢复优化模型及其MATLAB代码实现。首先,通过对IEEE Transactions on Power Systems文献的深入解读,阐述了该模型的设计理念与实践应用。该模型针对不确定分布式发电(DG)出力和负荷大小的情况,提出了两阶段鲁棒恢复策略:第一阶段确定故障恢复策略,第二阶段寻找最恶劣场景。文中还介绍了C&CG方法用于求解该模型的具体步骤。此外,文章提供了确定性和两阶段鲁棒故障恢复方法的MATLAB代码,并通过蒙特卡洛模拟法进行N-1故障扫描,验证了模型的有效性和优越性。 适合人群:从事电力系统研究和开发的专业人士,尤其是对主动配电网故障恢复感兴趣的科研人员和工程师。 使用场景及目标:适用于需要提升主动配电网恢复能力的研究项目和工程实践中,帮助研究人员理解并应用两阶段鲁棒恢复优化模型,从而提高系统的稳定性和可靠性。 其他说明:本文不仅提供理论分析,还包括具体的代码实现,便于读者在实际工作中进行实验和验证。
2025-10-27 12:01:05 884KB MATLAB 分布式发电
1
"RRT*算法与DWA避障融合的全局路径规划Matlab代码实现",RRT*全局路径规划,融合局部动态窗口DWA避障matlab代码 ,RRT*; 全局路径规划; 局部动态窗口DWA避障; MATLAB代码; 融合算法。,基于RRT*与DWA避障的Matlab全局路径规划代码 RRT*算法与DWA避障融合的全局路径规划是一个高度集成的机器人导航技术,它将全局路径规划和局部避障结合起来,以实现机器人的高效、安全导航。RRT*(Rapidly-exploring Random Tree Star)算法是一种基于采样的路径规划算法,能够为机器人提供一个近似最优的路径。DWA(Dynamic Window Approach)是一种局部避障算法,它根据机器人的动态特性来计算出在短期内安全且有效的控制命令。通过将这两种算法结合起来,不仅能够生成一条从起点到终点的全局路径,还能实时地处理环境中的动态障碍物,提升机器人的自主导航能力。 在具体的Matlab代码实现中,开发者需要考虑算法的具体步骤和逻辑。RRT*算法将开始于起点并不断扩展树状结构,直至达到终点。在每一步扩展中,会随机选择一个采样点并找到距离最近的树节点,然后沿着两者之间的方向扩展出新的节点。随后,会评估新的节点并将其加入到树中,这个过程将重复进行,直到找到一条代价最小的路径。 然而,机器人在实际移动过程中很可能会遇到动态障碍物。这时就需要DWA算法发挥作用。DWA算法通过预测未来短时间内机器人的可能状态,并评估不同的控制命令对这些状态的影响。基于这些评估结果,算法会选出最佳的控制命令,使得机器人在避免碰撞的同时,尽可能朝着目标方向前进。 在Matlab中实现这一融合算法,开发者需要编写两部分代码,一部分负责RRT*路径规划,另一部分则负责DWA避障。代码中将包含初始化环境、机器人模型、障碍物信息以及路径搜索的函数。RRT*部分需要实现树的构建、节点的选择和扩展等逻辑;DWA部分则需要实现动态窗口的计算、控制命令的生成以及避障的逻辑。此外,还需要考虑如何在实时情况下快速地在RRT*路径和DWA避障之间切换,以确保机器人的导航效率和安全。 RRT*算法与DWA避障融合的Matlab代码实现不仅涉及算法设计,还需要考虑算法在复杂环境中的稳定性和鲁棒性。这意味着代码在实现时,需要经过充分的测试和调试,确保在不同的环境条件下都能够稳定运行。此外,为了提高代码的可读性和可维护性,开发人员还需要编写清晰的文档和注释,使得其他研究人员或者工程师能够理解和使用这些代码。 RRT*算法与DWA避障融合的全局路径规划是一个复杂但非常实用的技术,它为机器人提供了一种高效的导航解决方案。通过Matlab这一强大的数学计算和仿真平台,开发者可以更加容易地实现和测试这一复杂算法,以期在未来机器人技术的发展中发挥重要的作用。
2025-10-26 09:59:46 32KB 开发语言
1
SAR压缩感知成像算法既可以采用时域方式进行处理,也可以在频域中实现。这表明该算法具有在时域和频域两种不同域中完成成像的能力。
2025-10-24 17:42:09 56KB 合成孔径雷达(SAR)
1