matlab集成c代码 现当今机器学习/深度学习技术在某些具体垂直领域已被大量广泛应用到现实世界中,已经不再像前几年那么“火热”,与之对应的各类深度学习框架也是“百花齐放,百家争鸣”,框架终究只是个工具,不过简化了从“零”开始复杂繁琐的工作,让很多普通人都可以快速入门。本博客不单纯完成一个任务,也不涉及过多理论推导,而是真正体会到算法工作一步步原理,逐步实现,岂不乐乎? 以经典的识别为例,逐步一步步实现通用的深度学习网络模型架构,不调用任何第三方库和框架,使用matlab进行快速搭建、训练和测试。程序中所涉及的理论知识及使用的变量名严格按照、 这两篇博客的符号和公式进行。MNIST手写数字包含60000张训练图片,10000张测试图片,图片大小为28×28,灰度图像,给出的是四个二进制存储的文件,分别为训练和测试的数据集和标签文件。假设读者已经明白所给链接博客的理论知识(不清楚可以参考更多文后的文献和程序代码中给的链接),我们接下来进行下面的具体实现。 网络架构设计 考虑到网络简单和易用性,根据MNIST数据集特点,设计了四层网络层,分别为conv+relu+meanPool、conv
2022-11-30 16:43:36 3.02MB 系统开源
1
说在前头 本文是使用BP神经网络中的softmax回归模型实现MNIST手写数字识别,实际上能实现MNIST手写数字识别的神经网络还有CNN(卷积神经网络),下一篇可能会写。 Tensorflow是个什么东西 Tensorflow是一个采用 数据流图,用于数值计算的开源软件库。节点在图中表示数学操作,图中的线则表示在节点间相互联系的多维数据数组,即张量(Tensor)。 数据流图用“结点”和“线”的有向图来描述数学计算。“节点” 一般用来表示施加的数学操作,但也可以表示数据输入的起点/输出的终点,或者是读取/写入持久变量的终点。“线”表示“节点”之间的输入/输出关系。这些数据“线”可以输运“
2022-11-29 16:01:17 169KB ens fl flow
1
文件夹说明: 1. ./divert -- 全部进行像素反转后的 60000 张训练集图片; 2. ./divert_test -- 全部进行像素反转后的 60000 张测试集图片; 3. ./rotate -- 全部进行图像旋转后的 60000 张训练集图片; 4. ./rotate_test -- 全部进行图像旋转后的 60000 张测试集图片; 5. ./divert_and_rotate -- 像素反转后的 30000 张训练集图片 + 图像旋转后的 30000 张训练集图片; 6. ./divert_and_rotate_test -- 像素反转后的 30000 张测试集图片 + 图像旋转后的 30000 张测试集图片; 7. ./raw -- 手动创建的测试集图片,1-9 没有进行旋转,r1-r9 进行了不同角度的旋转 8. label_train.txt -- 训练集 label 9. label_test.txt -- 测试集label
2022-11-22 11:25:25 135MB pytorch MNIST deep learning
1
工程文件、数据集、源码下载; 深度学习 pytorch手写数字识别 MNIST数据集 解析+详细注释;
2022-11-01 20:06:03 33.16MB MNIST手写数字识别 深度学习 pytorch
1
我们将在PyTorch中构建一个简单的卷积神经网络,并使用MNIST数据集训练它识别手写数字。在MNIST数据集上训练分类器可以看作是图像识别的“hello world”。
该资源包含Mnist数据集手写数字识别的训练及预测代码,mnist在神经网络准确率与迭代次数关系,分别在tensorflow和pytorch框架下,以及如何查看checkpoint中参数的相关内容,已经相关的checkpoint文件
2022-10-13 21:11:05 61.09MB Mnist数据集 tensorflow pytorch
1
MNIST手写数字数据库,练习图像识别的常用数据库之一。
2022-08-22 09:06:51 21.31MB 图像识别 数据
1
该数据集是将从官网下载的MNIST数据集转换成了.png格式的图片之后的数据。新手通过本地使用该数据集训练模型可以更好的了解图像分类任务的完整的流程,有助于扩展到别的分类任务。
2022-07-29 09:07:56 29.64MB mnist 手写数字 图像分类 数据集
1
该程序为纯手写代码, 不使用任何深度学习相关库。网络使用卷积+全连接,且使用Dropout 在5分钟内实现97%以上的准确度。
2022-07-15 12:05:54 1KB 深度学习 手写数字识别 不使用库
1
MNIST Dataset 是一个手写数字数据集,其包含 60,000 个示例训练集和 10,000 个示例测试集,它主要用于机器视觉领域的图像分类,该数据集中的数字已经过尺寸标准化处理,并以固定尺寸的图像为中心。 MNIST Dataset 由纽约大学库兰特研究所、谷歌纽约实验室和微软雷德蒙研究院于 1998 年 11 月发布,主要发布人为 Y. LeCun、L. Bottou、Y. Bengio 和 P. Haffner,其目前已是图像分类中最经典的练习数据集。
2022-07-13 11:04:55 11.2MB 数据集