采用UC3843 电流型PWM 控制芯片设计了一种连续电流模式(Continuous Current Mode,简称CCM)的Boost变换器。建立了Boost 变换器CCM 电路的数学模型,推导了其工作条件,并利用Multisim 仿真软件进行电路仿真,验证了设计电路的可行性。试验结果显示,该电路能够很好地满足输出性能的设计要求 在分析基于UC3843的CCM模式Boost变换器设计的知识点之前,首先需要解释文章中提到的一些关键术语和概念。UC3843是一种电流型脉宽调制(PWM)控制芯片,常用于开关电源的控制。Boost变换器是一种升压转换器,它能够将较低的直流电压提升为较高的直流电压。而CCM(Continuous Current Mode,连续电流模式)是一种开关电源的工作模式,在这种模式下,变换器的电感电流在整个周期内都不会降至零。 1. Boost变换器的工作原理与数学模型: - 文章中提到了对Boost变换器CCM电路建立数学模型,并推导了工作条件。数学模型的建立通常涉及电路的静态和动态分析,包括电感器(L)和电容器(C)等关键元件的工作状态描述。 - 电感器(L)在工作中的状态变化是根据输入电压(Ui)和输出电压(Uo)之间的关系来确定的。当开关(S)闭合时,电感器开始充电,电流线性增加(di/dt = Ui/L);当开关断开时,电感器放电,电流线性减少(di/dt = -(Ui+Uo)/L)。这一过程涉及到电感器储能和释放能量的原理。 2. PWM控制与UC3843芯片: - PWM控制技术主要用于调节输出电压,通过改变开关管的导通和截止时间比例(占空比D)来控制输出电压。PWM控制可以有效减少输出电压纹波,提升电源效率。 - UC3843芯片是一款性能稳定的电流模式PWM控制器,它能提供精确的电流控制,适用于开关电源的设计。通过控制开关管的开关来调节流过电感的电流,进而控制输出电压。 3. Multisim仿真软件的应用: - Multisim是电子仿真软件,它能对设计的电子电路进行仿真测试,以验证电路设计的正确性。在本设计中,通过Multisim软件对Boost变换器CCM电路进行仿真,确保了设计的可行性。 4. 设计电路的性能指标: - 文章中提到了输出电压Uo=36V,开关频率fs=40kHz,输出功率Po=30W等性能指标。这些指标对于评估Boost变换器性能至关重要。 - 文章还提到了变换器在CCM和DCM(不连续电流模式)两种不同工作状态下的性能,CCM模式相比DCM模式在相同条件下有更高的输出电流。 5. 变换器电路的具体元件参数: - 电路中的关键元件如电感(L)、电容(C)、二极管(VD)、MOSFET晶体管(IRF641)以及负载电阻(RL)都有特定的参数值,这些参数值的选择直接影响到变换器的效率和性能。 - 文章中提到了不同电阻值(Rs)对变换器性能的影响。例如,Rs的不同值对应于不同的电感电流最大值(ILmax),从而影响到变换器的功率效率(η)。 6. 设计验证和结果: - 设计验证包括了理论分析、仿真测试和实际电路测试。理论分析为设计提供基础,仿真测试为理论分析提供进一步的验证,实际电路测试则确保设计在实际应用中达到预期性能。 - 实验结果表明,设计的Boost变换器在CCM模式下能很好地满足输出性能的设计要求,说明了采用UC3843电流型PWM控制芯片进行设计的有效性和可行性。 通过以上分析,我们可以了解到基于UC3843的CCM模式Boost变换器设计涉及到了电路原理、PWM控制技术、仿真验证等多个方面的专业知识。设计者必须对这些知识点有深入的了解才能完成类似的设计任务。
2025-07-14 14:39:21 375KB uc3843 BOOST
1
光伏储能三相并离网逆变切换运行模型:Boost电路应用与高效功率跟踪技术,光伏储能三相并离网逆变切换运行模型:Boost、Buck-boost双向DCDC控制、PQ与VF控制及孤岛检测自动切换笔记分享,光伏储能+三相并离网逆变切运行模型【含笔记】 包含Boost、Buck-boost双向DCDC、并网逆变器控制、离网逆变器控制4大控制部分 光伏+boost电路应用mppt 采用电导增量法实现光能最大功率点跟踪 并网逆变采用PQ控制 离网逆变采用VF控制控制 双向dcdc储能系统维持直流母线电压恒定 孤岛检测,然后在并、离网之间进行自动切 波形漂亮 转过程看图说话 ,光伏储能; 三相并离网逆变切换运行模型; Boost; Buck-boost双向DCDC; MPPT; 电导增量法; PQ控制; VF控制; 双向dcdc储能系统; 孤岛检测。,光伏储能系统:四控部分协同运行模型及MPPT最大功率追踪
2025-07-09 09:58:44 3.58MB 开发语言
1
基于Matlab Simulink的模型预测控制与PI控制结合的Boost变换器均流响应研究,模型预测控制,基于两相交错并联boost变器。 可完好地实现均流。 模型中包含给定电压跳变和负载突变的响应情况。 模型中0.1s处给定由300变为250,0.3s处由250变为300。 0.2s处负载跃升为两倍的情况。 响应速度快。 有模型预测控制以及PI+模型预测控制两种方式。 后者的稳态误差更小以及响应速度更快 运行环境为matlab simulink ,模型预测控制; 两相交错并联boost变换器; 均流; 电压跳变; 负载突变; 响应速度; PI+模型预测控制; Matlab Simulink。,基于PI+模型预测控制的双相交错并联Boost变换器模型研究
2025-06-28 16:42:10 220KB ajax
1
内容概要:本文深入探讨了单相Boost升压变换器的工作原理及其与PI+模型预测控制(MPC)的协同效应。文中详细介绍了单相Boost升压变换器的基础构成和工作方式,并重点讲解了PI控制用于电压外环、MPC用于电感电流内环的控制策略。通过MATLAB/Simulink和PLECS仿真环境进行了系统建模和仿真实验,验证了PI+MPC控制策略在提高系统动态响应速度和稳定性方面的有效性。此外,还提供了一个简化的代码示例,帮助读者理解和实现这一控制策略。 适合人群:从事电力电子系统设计的研究人员和技术人员,尤其是对单相Boost升压变换器和先进控制策略感兴趣的读者。 使用场景及目标:适用于希望深入了解单相Boost升压变换器及其控制策略的研究人员和技术人员。目标是掌握PI+MPC控制策略的具体实现方法,以及如何利用仿真工具优化电力电子系统的性能。 其他说明:本文提供的代码示例和仿真结果仅供参考,实际应用中需根据具体情况调整参数和模型。
2025-06-28 16:34:35 479KB 电力电子 PLECS
1
内容概要:本文详细介绍了利用MATLAB进行Buck-Boost升降压斩波电路的设计与仿真过程。首先解释了Buck-Boost电路的基本原理及其电压变换特性,接着通过具体实例展示了如何在MATLAB/Simulink环境中构建电路模型,包括参数设定、PWM信号生成、PID控制器调参等步骤。文中还探讨了实际应用中常见的问题,如电感值选择不当引起的电流纹波过大、二极管压降和MOSFET导通电阻的影响,并提供了相应的解决方案。此外,文章强调了硬件在环测试的重要性,讨论了将仿真模型转化为实际硬件过程中需要注意的关键点,如死区时间和寄生参数的处理。 适合人群:从事电力电子设计的研究人员和技术工程师,尤其是那些希望深入了解Buck-Boost电路特性和掌握MATLAB仿真技能的人群。 使用场景及目标:适用于需要设计高效稳定的直流电源转换系统的项目,帮助工程师们在理论推导的基础上,通过仿真手段验证设计方案的可行性,优化电路性能,最终实现从仿真到实物的有效过渡。 其他说明:文章不仅涵盖了基本的电路理论,还包括了许多实践经验,如参数选择的经验法则、常见错误的规避方法以及提高仿真实验效率的小技巧。这些内容对于初学者来说非常有价值,能够显著提升他们的动手能力和解决实际问题的能力。
2025-06-24 18:19:29 1.1MB
1
MATLAB Simulink主动均衡电路模型:汽车级锂电池动力模组模糊控制策略学习版(基于Buck-boost电路与SOC差值、均值及双值比较),MATLAB-simulink主动均衡电路模型 模糊控制 #汽车级锂电池 动力锂电池模组(16节电芯) 主动均衡电路:Buck-boost电路 均衡对象:SOC 控制策略:差值比较 均值比较 双值比较 模糊控制 可调整充电电流 与放电电流 且仅供参考学习 版本2020b ,MATLAB; Simulink; 主动均衡电路模型; 模糊控制; 汽车级锂电池; 动力锂电池模组; Buck-boost电路; 均衡对象SOC; 控制策略; 充电电流; 放电电流; 版本2020b,基于MATLAB Simulink的汽车级锂电池主动均衡电路模型研究:模糊控制策略与实践(2020b版)
2025-06-22 21:04:57 989KB xbox
1
内容概要:本文详细探讨了光伏系统中最大功率点追踪(MPPT)技术的应用,特别是在Buck和Boost变换器中的实现。文中介绍了两种主要的MPPT算法——扰动观察法和电导增量法,并通过Simulink和PLECS进行建模仿真。对于Buck变换器,重点讨论了占空比调节和PWM模块的设计;而对于Boost变换器,则强调了电感参数的选择及其对MPPT性能的影响。此外,还涉及了闭环控制系统的搭建,包括采样周期与PWM频率的协调以及噪声过滤等问题。 适合人群:从事光伏系统研究的技术人员、电力电子工程师、高校相关专业师生。 使用场景及目标:适用于希望深入了解光伏系统MPPT控制机制的研究者和技术开发者,旨在帮助他们掌握Buck/Boost变换器的具体应用方法,提高光伏系统的发电效率。 其他说明:文中提供了大量MATLAB/Simulink代码实例,便于读者理解和实践。同时,针对实际调试过程中遇到的问题给出了具体的解决方案,如防止过压保护、优化采样方式等。
2025-06-19 18:53:05 461KB
1
在Simulink中构建了一个双向Buck-Boost电路仿真模型,该模型具备以下特点: 模型结构:模型完整涵盖了主电路和控制电路两大部分。主电路部分设计用于实现电能的双向转换,能够适应不同工作模式下的能量传输需求;控制电路则负责对电路的运行状态进行精准调控,确保系统稳定运行。 控制策略:控制电路采用了电压电流双闭环控制架构,并且在每个闭环中均运用了PI(比例-积分)控制器。电压环主要负责维持输出电压的稳定,确保其在设定值附近精确调节;电流环则用于精确控制电路中的电流,从而实现快速动态响应和良好的稳态性能。通过双闭环的协同作用,系统能够在不同负载和输入条件下保持高效稳定的运行状态。 负载特性:主电路设计中加入了可变负载模块,支持负载的动态投切功能。这意味着在仿真过程中,可以模拟负载大小的快速变化,例如从轻载突变为重载,或者反之。通过这种方式,能够直观地观察和分析电路在负载突变时的动态响应特性,包括输出电压的波动、恢复时间以及电流的变化情况等,从而验证电路的适应性和稳定性。 参数配置与运行状态:该模型的主电路和控制电路的所有关键参数均已根据实际应用需求进行了详细且合理的配置。这些参数包括电感、电容、开关器件的特性参数,以及PI控制器的比例系数和积分系数等。经过精细调整后,模型可以直接运行,无需额外的参数设置。用户可以直接启动仿真,观察电路在不同工况下的运行情况,包括稳态性能、动态响应特性等,方便进行电路性能评估和优化研究。
2025-06-12 13:35:38 56KB Simulink
1
内容概要:本文探讨了光伏发电与电池储能系统的整合应用及其在Simulink仿真平台上的建模与优化。首先介绍了光伏发电和电池储能的基本概念,随后详细阐述了MPPT(最大功率点跟踪)增量导纳法的应用,该方法通过实时调整光伏系统的阻抗来确保最大功率输出。接着讨论了双向buck-boost电路在储能系统中的重要作用,它可以实现能量的双向传输并在充放电过程中调节电压。最后,文章强调了Simulink仿真平台在系统建模与优化中的重要性,通过仿真可以优化参数配置和控制策略,提升系统性能。 适合人群:从事新能源技术研发的专业人士、高校相关专业师生、对光伏发电和电池储能感兴趣的科研人员。 使用场景及目标:适用于希望深入了解光伏发电与电池储能系统的工作原理和技术细节的研究人员;目标是在实际项目中应用这些技术和仿真工具,以提高系统的效率和可靠性。 阅读建议:读者可以通过本文了解MPPT增量导纳法的具体实现方式,掌握双向buck-boost电路的设计思路,并学会使用Simulink进行系统建模与优化。建议结合实际案例进行深入理解和实践操作。
2025-06-12 13:35:14 1.26MB Simulink buck-boost电路
1
内容概要:本文深入探讨了非隔离双向DC-DC Buck-Boost变换器的工作原理及其在Matlab/Simulink环境下的仿真建模方法。文中详细描述了变换器的主电路和控制电路设计,特别是采用了电压外环电流内环的双闭环控制方式来确保系统在不同工作状态下的稳定性。具体来说,在正向运行时,直流电压源可以为蓄电池提供恒流恒压充电;而在反向运行时,蓄电池能放电以维持直流侧电压稳定。通过一系列仿真实验,验证了所提模型的有效性和可靠性。 适合人群:对电力电子系统有兴趣的研究人员和技术爱好者,尤其是那些希望深入了解非隔离双向DC-DC变换器以及掌握Matlab/Simulink仿真技能的人士。 使用场景及目标:适用于需要评估或改进非隔离双向DC-DC变换器性能的研究项目;也可用于教学环境中帮助学生更好地理解相关理论知识并培养实际操作能力。 其他说明:文中提供的仿真模型不仅有助于理解变换器的基本运作机制,还为进一步探索其性能优化和控制策略奠定了坚实的基础。
2025-06-02 22:12:48 344KB
1