网络是一系列节点和边的集合,通常表示成一个包含节点和边的图。许多复杂系统都以网络的形式来表示,如社交网络、生物网络和信息网络。为了使网络数据的处理变得简单有效,针对网络中节点的表示学习成为了近年来的研究热点。
2025-05-06 08:36:44 2.35MB 网络表示学习
1
机器学习算法Python实现——线性回归,逻辑回归,BP神经网络 机器学习算法Python实现 一、线性回归 1、代价函数 2、梯度下降算法 3、均值归一化 4、最终运行结果 5、使用scikit-learn库中的线性模型实现 二、逻辑回归 1、代价函数 2、梯度 3、正则化 4、S型函数(即) 5、映射为多项式 6、使用的优化方法 7、运行结果 8、使用scikit-learn库中的逻辑回归模型实现 逻辑回归_手写数字识别_OneVsAll 1、随机显示100个数字 2、OneVsAll 3、手写数字识别 4、预测 5、运行结果 6、使用scikit-learn库中的逻辑回归模型实现 三、BP神经网络 1、神经网络model 2、代价函数 3、正则化 4、反向传播BP 5、BP可以求梯度的原因 6、梯度检查 7、权重的随机初始化 8、预测 9、输出结果 四、SVM支持向量机 1、代价函数 2、Large Margin 3、SVM Kernel(核函数) 4、使用中的模型代码 5、运行结果 五、K-Means聚类算法 1、聚类过程 2、目标函数 3、聚类中心的选择 4、聚类个数K的选择
2025-05-05 19:54:36 34.1MB 神经网络 机器学习 python 线性回归
1
基于不同调制方式下AWGN信道性能的深入分析:4QAM、16QAM与64QAM的加噪前后对比与误码率、误符号率探讨的十图仿真程序学习指南。,基于4QAM,16QAM,64QAM调制方式下经过AWGN信道的性能分析 均包含加噪声前后的星座图、误码率和误符号率性能对比,该程序一共10张仿真图,可学习性非常强 ,基于4QAM; 16QAM; 64QAM调制方式; AWGN信道; 性能分析; 星座图对比; 误码率; 误符号率; 仿真图学习,4QAM、16QAM、64QAM调制在AWGN信道性能分析与比较
2025-05-05 17:47:48 947KB
1
内容概要:本文档《TOGAF-V9 学习笔记_V1.1.pdf》详细介绍了TOGAF(The Open Group Architecture Framework)9版本的核心概念、架构开发方法(ADM)、架构内容框架、企业连续系列、参考模型及架构能力框架。TOGAF作为一种企业架构框架,旨在帮助企业设计、理解和管理复杂的IT环境。文档首先概述了TOGAF的基本概念,包括企业架构、架构框架、ADM流程及其各个阶段的任务和交付物。接着深入探讨了架构内容框架,包括业务架构、数据架构、应用架构和技术架构的设计和实现方法。此外,文档还介绍了企业连续系列、架构存储库、参考模型等内容,以及如何通过架构能力框架来提升企业架构能力。最后,文档阐述了如何在实际项目中应用TOGAF,确保架构的合规性和一致性。 适合人群:具备一定IT架构基础,尤其是对企业架构感兴趣或从事企业架构设计、实施和管理工作的专业人士。 使用场景及目标:①帮助架构师理解并掌握TOGAF的核心理念和方法论;②指导企业在实施企业架构项目时,如何应用TOGAF进行架构设计和管理;③确保架构开发过程中的各个环节能够有效衔接,从而实现业务目标和技术目标的统一。 阅读建议:由于TOGAF内容较为复杂,建议读者在阅读时结合实际项目案例进行理解,重点关注ADM各个阶段的具体操作步骤和关键交付物。同时,对于初学者,可以从基础概念入手,逐步深入到具体的实施细节,确保对整个框架有全面的理解。
1
新版HCIP-openEuler欧拉认证完整学习笔记涵盖了openEuler操作系统的基础知识和高级应用,全面讲解了HCIP(华为认证网络工程师高级——openEuler方向)的相关内容。openEuler是由华为公司推出的一款基于Linux内核的企业级操作系统,旨在满足企业业务发展对高性能、高可靠、易管理和安全可控的数字化操作系统的需求。HCIP认证则是华为推出的高阶网络技术认证,其中openEuler方向更专注于华为基于openEuler打造的各类服务器和解决方案。 学习笔记内容分为多个模块,每个模块都按照HCIP考试大纲进行编写,内容详实,结构清晰。首先从openEuler操作系统的安装与配置开始,详细介绍其安装步骤、环境搭建、系统优化等基础知识点。接着,深入探讨openEuler系统的核心技术,包括内核原理、文件系统、网络配置与管理、系统服务与进程管理等。学习者可以系统学习openEuler的操作命令、软件包管理、虚拟化技术等实用技能,掌握如何在openEuler平台上部署和优化企业级应用。 此外,学习笔记还包括了HCIP认证考试的模拟测试题和实操案例分析,帮助学习者加深理解并有效应对考试。通过对知识点的全面掌握,学习者将能够在实际工作中,如服务器运维、云计算管理、网络安全等领域,熟练运用openEuler操作系统,提供高效、安全的IT解决方案。 该学习笔记的编写团队经验丰富,不仅涵盖了众多openEuler社区专家,还包括了华为认证讲师,其内容紧跟openEuler最新版本及HCIP认证考试动态。因此,无论是对于准备获取HCIP-openEuler欧拉认证的专业人士,还是希望深入了解openEuler操作系统的IT工程师,本学习笔记都是一本极具价值的参考资料。
2025-05-05 13:37:02 4.73MB
1
聚类是机器学习领域的一种无监督学习方法,主要用于数据挖掘,尤其在数据分析、模式识别、图像分割等场景中广泛应用。本资源包含一个关于聚类算法的PPT和使用Python实现的可运行代码,旨在帮助理解并实践聚类过程。 聚类的目标是将数据集中的对象依据相似性原则划分成不同的组,每个组称为一个簇。簇内的对象彼此相似,而簇间的对象则相异。聚类算法不依赖于预先设定的类别,而是通过数据本身的特性来发现潜在的结构。 PPT可能涵盖以下知识点: 1. 聚类的基本概念:包括定义、目的、类型(层次聚类、划分聚类、基于密度的聚类、基于模型的聚类等)。 2. 聚类的质量度量:如轮廓系数、Calinski-Harabasz指数、Davies-Bouldin指数等,用于评估聚类效果的好坏。 3. 常见聚类算法介绍: - K-Means:是最常用的聚类算法之一,基于距离度量,通过迭代优化分配和中心点。 - 层次聚类(Agglomerative Clustering和Divisive Clustering):分为自底向上和自顶向下的策略,通过合并或分裂节点构建层次结构。 - DBSCAN(基于密度的聚类):能发现任意形状的簇,对噪声有较好的抵抗能力。 - Mean Shift:寻找密度峰值的聚类方法,适合处理非凸形状的簇。 - Gaussian Mixture Models (GMM):基于概率模型的聚类,假设数据来自高斯混合分布。 接下来,Python实现的代码可能包括这些算法的实例和应用: 1. K-Means代码实现:会包含初始化质心、分配数据点、更新质心等步骤,以及可能使用的库,如scikit-learn中的KMeans类。 2. DBSCAN代码实现:涉及计算邻域、找到核心对象、扩展簇的过程,可能会使用到scikit-learn中的DBSCAN类。 3. 其他算法的实现:例如层次聚类中的linkage函数,GMM的fit和predict方法等。 实际代码中还会涉及数据预处理步骤,如标准化、降维(PCA)等,以确保聚类结果不受特征尺度或维度的影响。此外,代码可能还包括可视化部分,使用matplotlib或seaborn库展示聚类结果,如散点图、聚类树等。 这个资源提供了一个全面了解和实践聚类算法的平台,不仅理论讲解清晰,还有实战代码可供学习和参考。无论是初学者还是有一定经验的开发者,都能从中获益,提升对聚类的理解和应用能力。
2025-05-05 10:47:08 8.43MB 聚类 机器学习
1
花卉识别系统是一种利用计算机视觉和机器学习技术来自动识别和分类不同种类花卉的系统。该系统的核心是基于深度学习模型ResNet18的训练网络,通过图像识别技术,用户上传的花卉图片可以被准确分类。 深度学习是一种模拟人脑处理信息的方式,通过构建复杂的神经网络结构来分析数据。在花卉识别系统中,ResNet18作为卷积神经网络(CNN)的一种,擅长处理图像数据。ResNet18通过引入残差学习框架,使得网络能够训练更深的层次结构,从而获得更高效的特征提取能力。 Python是一种广泛使用的高级编程语言,它具有丰富的数据科学和机器学习库,如TensorFlow、Keras和PyTorch等。Python简洁易读的语法和强大的社区支持使其成为开发机器学习模型的理想选择。在花卉识别系统中,Python被用来编写代码、搭建模型以及与用户界面(UI)进行交互。 用户界面(UI)是用户与系统交互的前端部分,它负责展示信息并接收用户的输入。在花卉识别系统中,UI设计需要简洁直观,使得非专业人士也能轻松使用。一个好的UI不仅可以提升用户体验,还能够减少操作错误,提高系统的整体效率。 花卉识别系统的开发过程包括数据收集、预处理、模型训练、评估和部署等多个步骤。需要收集大量不同种类的花卉图片作为训练数据。接下来,对这些图片进行必要的预处理,如缩放、归一化等,以适应模型输入的要求。然后,使用ResNet18模型进行训练,并不断调整参数以优化性能。训练完成后,对模型进行评估,确保其具有良好的识别准确率。将训练好的模型部署到一个用户友好的UI中,供用户使用。 在使用花卉识别系统时,用户只需上传一张花卉图片,系统便会自动处理图片并输出识别结果,告诉用户所上传的花卉种类。这个过程主要依赖于模型的预测能力,而UI则负责展示预测结果和提供用户交互。 花卉识别系统的应用前景非常广泛,它不仅能够帮助植物学家和园艺师进行科学研究和植物养护,还能为普通爱好者提供一个学习和欣赏花卉的平台。此外,随着智能手机和移动应用的普及,基于移动设备的花卉识别应用也将成为可能,进一步扩大了系统的使用范围。 花卉识别系统通过结合深度学习模型、Python编程语言和用户友好的界面设计,为用户提供了一个高效、便捷的花卉分类工具。这个系统在教育、科研和日常生活等多个领域都具有重要的应用价值。
2025-05-04 23:14:35 245.9MB 机器学习 深度学习
1
适用于理工专业的毕业生,毕业答辩时可供参考,叙述详细准确,可以作为自己答辩PPT的参考
2025-05-04 12:51:51 1.03MB 深度学习
1
内容概要:本文详细介绍了如何通过麻雀算法(Sparrow Search Algorithm, SSA)优化最小二乘支持向量机(LSSVM),以提升其在多输入单输出(MISO)回归预测任务中的性能。首先阐述了LSSVM的基本原理及其在处理复杂非线性数据方面的优势,接着讨论了传统LSSVM存在的超参数优化难题。然后重点介绍了麻雀算法的特点及其在优化LSSVM超参数方面的应用,展示了如何通过全局搜索能力克服局部最优问题,提高预测精度和泛化能力。最后,通过多个实际案例验证了该方法的有效性,并提供了完整的Python代码实现,涵盖从数据预处理到模型评估的全过程。 适合人群:对机器学习尤其是回归分析感兴趣的科研人员和技术开发者,以及希望深入了解LSSVM和麻雀算法优化机制的研究者。 使用场景及目标:①适用于需要高精度预测的应用领域,如金融预测、气象预报、能源需求预测等;②通过优化LSSVM的超参数,提高模型的预测精度和泛化能力;③提供一个易于使用的回归预测工具,便于快速部署和应用。 其他说明:本文不仅探讨了理论层面的内容,还给出了具体的代码实现,使读者能够在实践中理解和掌握相关技术。同时,文中提到
1
内容概要:本文介绍了一种利用灰狼优化算法(GWO)优化最小二乘支持向量机(LSSVM)参数的方法。首先解释了GWO的基本原理,即通过模拟狼群捕猎的行为来寻找最优解。文中详细展示了如何将GWO应用于LSSVM的两个重要参数——惩罚参数c和核函数参数g的优化过程中。接着提供了具体的Python和Matlab代码实现,包括适应度函数的设计、狼群位置的更新规则以及完整的优化流程。此外,还给出了实际案例的应用,如轴承故障数据集的预测精度显著提高,并讨论了一些常见的注意事项和技术细节。 适合人群:从事机器学习研究或应用的技术人员,尤其是对超参数优化感兴趣的开发者。 使用场景及目标:适用于需要高效优化LSSVM模型参数的场景,旨在帮助研究人员减少手动调参的时间成本,同时获得更好的模型性能。 其他说明:文中提供的代码可以直接在Windows系统上运行,用户只需准备好自己的数据集并适当调整相关参数即可使用。对于初学者来说,这是一个非常友好的入门级项目,能够快速上手并看到实际效果。
2025-05-04 08:46:54 318KB 机器学习 参数优化 Windows系统
1