本文讨论了基于分布式控制的DC/DC变换器并联系统自动交错方案,该方案旨在实现并联DC/DC变换器的交错运行,同时在模块数量变化时自动调整,保持交错运行状态。分布式控制能够有效提升系统的灵活性与可靠性,且不使用交错线实现交错,避免了系统风险。 我们要了解什么是DC/DC变换器。DC/DC变换器是一种电力电子设备,用于将一个直流电压转换为另一个不同水平的直流电压。这种变换器在电源管理中非常关键,广泛应用于工业自动化、通信设备、计算机以及电动汽车等领域。根据控制方式的不同,DC/DC变换器有多种类型,比如降压(BUCK)、升压(BOOST)、升降压(BUCK-BOOST)等。 并联系统指的是多个相同的电源模块并联运行,以提供更大的输出功率和更好的负载分配。并联系统的优势在于它可以提供冗余、提高系统的容错能力,并且便于系统扩展。当并联系统中的模块数量变化时,为了保证每个模块的输出电压和电流波形相互协调,减少波形干扰,就需要交错运行技术。 传统交错运行控制方案通常采用集中式控制,有一个独立的控制单元来同步各个模块的开关动作,从而减少电压和电流纹波。但是,集中式控制的缺点在于它对控制单元的可靠性要求很高,一旦控制单元出现问题,整个系统可能会失效。此外,集中式控制难以应对模块数量的变化,不便于系统的模块化设计。 相对于集中式控制方案,分布式控制方案最大的特点就是不需要交错线,各模块间无额外连接,这有利于模块化设计,从而提高了系统的灵活性和可靠性。在分布式控制中,各模块自行调整其开关频率与相位,以实现交错运行。为了实现这种控制,本文提出的方案包括了脉冲整形单元、异地时钟获取环节、锁相环电路以及PWM控制信号发生电路。 脉冲整形单元负责处理主电路反馈的信号,提取并整形出系统开关信号。异地时钟获取环节通过处理不同模块的脉冲信号来获得系统时钟,而锁相环电路则用来实现模块间时钟信号的相位同步。PWM控制信号发生电路则根据系统时钟和反馈信号,生成PWM控制信号来控制变换器的开关动作。 此外,文中还提到了实验验证。通过一个三模块并联DC/DC电源系统的实验,验证了该自动交错方案的可行性。实验结果证明,该方案确实可以实现各模块的交错运行,保持系统在模块数量变化时的稳定性和可靠性。 在电子技术领域,开发板是开发和测试电子项目的常用工具。ARM开发板是指使用ARM架构处理器的开发板。在实验中,ARM开发板可以被用来实现控制系统的设计与测试,比如控制电路的PWM信号发生电路。 总结来说,基于分布式控制的DC/DC变换器并联系统自动交错方案,通过创新的控制策略和电路设计,成功实现了无交错线的交错控制,降低了系统复杂度,提高了灵活性和可靠性。这一技术进步对于提高电力电子系统的性能和效率具有重要意义,对于构建高效、可靠和灵活的电源管理解决方案有着实际的应用价值。
2025-04-24 16:26:35 326KB
1
24年电赛A题-AC-AC变换电路并联运行(原理图+代码+仿真文件)Maltlab文件,输出幅度可调波形,详细见博客:https://blog.csdn.net/qq_62316532/article/details/140841537
2025-04-19 16:00:13 34KB
1
### 串并联谐振电路知识点详解 #### 一、实验背景与目的 **实验目的:** 1. **深入理解串并联谐振电路的工作原理:** 通过实验加深对串并联谐振电路条件及特性的理解,并掌握谐振频率的测量方法。 2. **品质因数Q与通频带的物理意义:** 学习如何理解电路品质因数Q和通频带的物理意义及其测定方法。 3. **频率特性曲线的测定:** 掌握测定RLC串并联谐振电路的频率特性曲线的方法,深刻理解和掌握串联谐振电路的意义及作用。 4. **Multisim软件的应用:** 掌握Multisim软件中的Function Generator、Voltmeter、Bode Plotter等仪表的使用以及AC Analysis等SPICE仿真分析方法。 #### 二、串联谐振电路 **实验原理:** 1. **回路阻抗** \(Z=R+j(\omega L-\frac{1}{\omega C})\),其中 \(\omega\) 为角频率,\(L\) 为电感,\(C\) 为电容。 2. 当 \(\omega L-\frac{1}{\omega C}=0\) 时,电路中的电流与激励电压同相,电路处于**谐振状态**。 3. 谐振角频率 \(\omega_0=\frac{1}{\sqrt{LC}}\),谐振频率 \(f_0=\frac{1}{2\pi\sqrt{LC}}\)。 **电路处于谐振状态时的特性:** 1. 回路阻抗 \(Z=R\),整个回路相当于一个纯电阻电路。 2. 回路电流 \(I_0\) 数值最大,\(I_0=\frac{U_s}{R}\),其中 \(U_s\) 为激励电压。 3. 电阻电压 \(U_R\) 的数值最大,\(U_R=U_s\)。 **电路的品质因数Q和通频带B:** 1. 品质因素 \(Q=\frac{\omega L}{R}=\frac{\sqrt{L/C}}{R}\)。 2. 截止频率定义为回路电流下降到峰值的 \(0.707\) 倍时所对应的频率,介于两截止频率之间的频率范围称为**通频带** \(B\),即 \(B=\frac{f_0}{Q}\)。 **实验步骤:** 1. 使用Multisim软件创建RLC串联电路。 2. 分别使用AC仿真、波特表、交流电压表等工具测量串联谐振电路的谐振曲线、谐振频率、-3dB带宽。 3. 随频率变化,测量电阻电压、电感电压、电容电压、电流的值,并记录所测数据。 4. 根据获取的数据绘制电流、电阻电压、电感电压等关于频率的谐振曲线。 **实验结果说明及结论:** 1. 谐振频率仅与元件 \(L\) 和 \(C\) 的数值有关,与电阻 \(R\) 和激励电源的频率无关。 2. Q值越大,曲线尖峰值越尖锐,选择性越好,但通频带越窄。 3. 计算品质因数时,电阻值需考虑电感的直流阻值。 4. 在实际测量时,由于电感存在直流电阻,电阻两端的电压在谐振点并不等于电源电压。 #### 三、并联谐振电路 **实验原理:** 当RLC回路并联谐振时,电感及电容上的电流大小为激励电流的Q倍,称为“电流谐振”。电感与电容上的电流大小相等但符号相反,相互抵消,使得电源电流实际上是全部流过电阻R。 **实验步骤:** 1. 使用Multisim软件创建RLC并联电路。 2. 测量并绘制I-f谐振频率。 **实验结果说明及结论:** 1. 并联谐振电路的特点在于,电感和电容上的电流远大于电源电流,且相位相反,能够实现电流的放大。 2. 并联谐振电路适用于信号电流的放大场景。 #### 四、误差来源 1. **系统误差:** 系统本身存在的固有误差,不可避免。 2. **读数误差:** 调节信号源的同时读数,可能导致测量数据与理论值存在一定差距。 3. **图像识别误差:** 示波器上的图像未完全达到预期形状,导致数据不够精确。 4. **仪器内阻的影响:** 实际测量时,仪器如万用表、信号源的内阻不可忽略,会影响最终结果。 #### 五、实验总结 通过本实验的学习,我们深入了解了RLC串并联谐振电路的工作原理和特性。特别是对于谐振频率的测量方法、品质因数Q和通频带的概念有了更深刻的认识。此外,掌握了使用Multisim软件进行仿真分析的方法,包括Function Generator、Voltmeter、Bode Plotter等工具的应用,这对于后续的电路设计与分析具有重要意义。同时,实验中出现的误差来源也提醒我们在实际操作中需要注意的问题。
2025-04-07 15:07:23 144KB Multisim Function Voltmeter Bode
1
matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随
2025-04-02 20:36:02 5KB matlab 源码
1
并联机器人,英文名为Parallel Mechanism,简称PM,可以定义为动平台和定平台通过至少两个独立的运动链相连接,机构具有两个或两个以上自由度,且以并联方式驱动的一种闭环机构。 并联机器人的特点呈现为无累积误差,精度较高;驱动装置可置于定平台上或接近定平台的位置,这样运动部分重量轻,速度高,动态响应好。 ### 并联机器人运动控制详解 #### 一、并联机器人的概述 并联机器人(Parallel Mechanism,简称PM)是一种特殊的机器人结构形式,它的动平台(末端执行器)和定平台(基座)通过至少两个独立的运动链相连接。这种独特的结构使得并联机器人在多个自由度上进行并联驱动,形成了一个闭环机构。与传统的串联机器人相比,并联机器人具有以下显著特点: - **无累积误差**:由于采用多条运动链,能够有效避免因单个关节误差累积而造成的整体精度下降。 - **高精度**:并联驱动方式能够提高整体系统的定位精度。 - **轻质运动部分**:驱动装置通常置于定平台上或接近定平台位置,减少了动平台的重量,提高了速度和动态响应性能。 #### 二、并联机器人的运动学 并联机器人的运动学分析主要包括正向运动学和逆向运动学两大部分。 - **正向运动学**:给定各驱动器的输入值,计算出末端执行器在空间中的位姿。对于并联机器人来说,正向运动学问题往往比串联机器人复杂,因为它涉及到多个独立运动链的耦合关系。 - **逆向运动学**:根据所需的末端执行器位姿,反求各驱动器的输入值。并联机器人的逆向运动学通常比正向运动学容易解决,因为可以通过调整多个驱动器来达到目标位姿。 #### 三、并联机器人的动力学 并联机器人的动力学分析涉及对机器人在运动过程中的力、扭矩等力学参数的研究,主要关注以下几个方面: - **动力学建模**:建立准确的动力学模型对于设计控制器至关重要。并联机器人的动力学模型通常包含质量矩阵、阻尼矩阵、刚体效应项等。 - **动力学仿真**:利用建立的动力学模型进行仿真,评估不同工况下机器人的性能。 - **动力学控制**:设计合理的控制器来保证机器人在各种运动模式下的稳定性和准确性。 #### 四、并联机器人的动力学控制 并联机器人的动力学控制是确保其稳定运行的关键技术之一,主要包括: - **PID控制**:比例积分微分(Proportional Integral Derivative)控制是一种常见的控制方法,适用于处理简单的线性系统。 - **自适应控制**:对于非线性系统,自适应控制可以根据系统的实时变化调整控制参数,以保持系统的稳定性。 - **智能控制**:利用模糊逻辑、神经网络等智能算法,可以提高控制系统的灵活性和鲁棒性。 #### 五、并联机器人的应用与发展 并联机器人因其独特的结构和性能优势,在许多领域得到了广泛应用,如精密装配、食品加工、医疗手术等领域。随着技术的进步,并联机器人的应用范围还将不断扩大,未来的发展趋势包括: - **智能化**:结合人工智能技术,提高机器人的自主决策能力和环境适应性。 - **模块化**:通过标准化模块的设计,降低生产成本,提高定制化的灵活性。 - **轻量化**:利用新型材料和技术减轻机器人的自重,进一步提高其运动性能。 并联机器人作为一类具有高度灵活性和精准性的特殊机器人结构,已经在工业自动化、医疗健康等多个领域展现出巨大的潜力。随着相关技术的不断进步,并联机器人的应用前景将会更加广阔。
2025-04-02 20:27:58 5.63MB 并联机器人 运动控制
1
"并联型有源滤波器APF的Matlab仿真模型:采用ip-iq谐波检测与滞环电流控制及PI直流电压调控",并联型有源滤波器,APF,matlab仿真模型。 谐波检测采用ip-iq方法,电流控制是滞环控制,直流电压是PI控制。 赠送相关电路图纸、代码,文档。 ,核心关键词:并联型有源滤波器; APF; Matlab仿真模型; 谐波检测; ip-iq方法; 电流控制; 滞环控制; 直流电压控制; PI控制; 电路图纸; 代码; 文档。,"基于Matlab仿真的并联型有源滤波器APF:IP-IQ谐波检测与滞环电流控制"
2025-04-01 15:10:01 5.99MB paas
1
基于MATLAB Simulink的双环控制DC DC变换器模型及性能比较分析,并附带相应结构电压电流控制的参考实验与论述。,MATLAB Simulink中两相交错并联双向DC-DC变换器:电压电流双闭环控制仿真模型研究及对比分析,MATLAB Simulink两相交错并联双向DC DC变器电压电流双闭环控制仿真模型 附参考文献 两相交错并联buck boost变器仿真 采用4mos结构,模型内包含单电压环开环控制,单电流环闭环控制(比例积分+前馈),电压电流双闭环控制(比例积分+前馈)三种控制方式,可以对比各种控制效果,三种方式中,双环控制模式的电感电流均流效果好,输出波形好,电压纹波小。 357 ,核心关键词:MATLAB; Simulink; 两相交错并联; 双向DC-DC变换器; 电压电流双闭环控制; 仿真模型; 比例积分控制; 前馈控制; 均流效果; 输出波形; 电压纹波。,基于MATLAB Simulink的DC-DC变换器双环控制仿真模型对比研究
2025-03-26 23:34:35 3.31MB
1
为使机器人具有良好的结构性能和工作性能,其结构系统必须具有良好的动力学特性.针对动力学特性问题,以ADAMS仿真软件为平台建立了简化的二自由度冗余驱动并联机器人模型,求出了运动学逆解,采用冗余驱动力控制电机的方法,完成了动力学仿真.结果表明该方法能减小驱动力变化范围和降低驱动力峰值,优化电机驱动力,提高并联机器人的驱动性能.研究所得的方法和结论具有较强的通用性,对相关冗余驱动并联机器人的动力学研究具有普遍的应用意义,同时为并联机器人的调试与控制提供了理论依据.
2025-03-25 20:52:05 1.41MB 工程技术 论文
1
在深入研究国内外逆变电源并联控制理论技术的基础上,本论文首先从单台三相逆变电源的研究入手,建立了三相逆变电源的数学模型,并将其转化到同步旋转坐标系进行分析,通过对滤波器传递函数的频域分析设计了滤波参数。 在单台三相逆变电源的控制上,采用双环控制的思想,运用了基于电感电流内环,输出电压反馈外环的控制策略,运用自动控制的理论,结合逆变器传递函数的模型,设计控制器的参数,然后在matlab中建立仿真模型,进行仿真分析。
2024-08-23 18:49:38 2.98MB 三相逆变电源 双闭环控制
1