本课题为基于连通域分割和模板匹配的二代居民身份证号码识别系统,带有一个GUI人机交互界面。可以识别数十张身份证图片。 首先从身份证图像上获取0~9和X共十一个号码字符的样本图像作为后续识别的字符库样本,其次将待测身份证图像进行去噪、灰度化、二值化、水平投影切割,垂直投影并切割,将待测身份证号码分割出来,然后进行待测号码图片与字符库样本对比计算、识别判断、最终确定待测身份证号号码。本设计关于身份证号码的识别是基于Matlab软件的基础上进行的。
2022-12-22 13:39:22 1.02MB 身份证检测 matlab身份证检测 matlab
1
本设计目标在于利用Matlab强大的图像处理能力和实用便捷的编程方法,通过处理包含人脸的视频帧系列图像,灰度积分投影技术的眼睛定位方法,进而利用perclos计数,计算眨眼率,从而得到比较准确的疲劳状况。
1
基于计算机视觉和机器学习的人脸检测及人脸识别系统源码+数据资料.zip本项目是基于OpenCV2跨平台计算机视觉和机器学习软件库的人脸检测及人脸识别系统, 采用Web应用作为用户和管理的交互页面。 系统人脸识别模块的图像处理采用PIL(Python Image Library)。 BPL是python的第三方图像处理库,但是由于其强大的功能与众多的使用人数,几乎已经被认为是python官方图像处理库了 软件架构 Flask:Flask是一个使用 Python 编写的轻量级 Web 应用程序框架。 OpenCV2:OpenCV2是一个跨平台计算机视觉和机器学习软件库。 LayUI:layui(谐音:类UI) 是一款采用自身模块规范编写的前端 UI 框架,遵循原生 HTML/CSS/JS 的书写与组织形式,门槛极低,拿来即用。且是国人开发,拥有较为完善的中文文档。 Pymysql及PooledDB:PyMySQL 是在 Python3.x 版本中用于连接 MySQL 服务器的一个库。DBUtils是一套Python数据库连接池包,并允许对非线程安全的数据库接口进行线程安全包装。
基于mtcnn+facenet网络实现简单人脸检测识别系统python源码+训练好的模型文件+项目说明.7z 这两个工程都是keras模型, 所提供的模型文件都只有权重没有网络结构, 我利用作者提供的网络定义和权重文件重新生成了带有网络结构的权重文件. 比如原先只有权重的模型文件pnet.h5, 生成含网络结构和权重的模型文件PNET.h5. 接着用keras2onnx工具把它(PNET.h5)转换成了onnx模型pnet.onnx, 其他胶水部分的逻辑没什么变化. 具体的转换代码请参考keras_onnx.py文件. 【备注】主要针对正在做毕设的同学和需要项目实战的深度学习cv图像识别模式识别方向学习者。 也可作为课程设计、期末大作业。包含:项目源码、训练好的模型、项目操作说明等,该项目可直接作为毕设使用。 也可以用来学习、参考、借鉴。如果基础不错,在此代码上做修改,训练其他模型。
2022-12-12 11:28:57 2.46MB mtcnn facenet 人脸检测 人脸识别系统
基于YOLOV5的水域中游泳者检测识别系统源码+数据集.zip数据集说明 数据集存放在项目根路径的 myDataSet 文件夹内在实际训练时,请按照作者要求的目录机构组织数据集的位置,即让数据集和项目位于同级目录下。 基于YOLOV5的水域中游泳者检测识别系统源码+数据集.zip数据集说明 数据集存放在项目根路径的 myDataSet 文件夹内在实际训练时,请按照作者要求的目录机构组织数据集的位置,即让数据集和项目位于同级目录下。 基于YOLOV5的水域中游泳者检测识别系统源码+数据集.zip数据集说明 数据集存放在项目根路径的 myDataSet 文件夹内在实际训练时,请按照作者要求的目录机构组织数据集的位置,即让数据集和项目位于同级目录下。 基于YOLOV5的水域中游泳者检测识别系统源码+数据集.zip数据集说明 数据集存放在项目根路径的 myDataSet 文件夹内在实际训练时,请按照作者要求的目录机构组织数据集的位置,即让数据集和项目位于同级目录下。 基于YOLOV5的水域中游泳者检测识别系统源码+数据集.zip数据集说明 数据集存放在项目根路径的 myDataSet 文件夹内
1、基于yolov5算法实现电动自行车识别检测源码+模型文件+评估指标曲线+使用说明 2、附有训练、loss(损失值)下降曲线、Recall(召回率)曲线、precision(精确度)曲线、mAP等评估指标曲线 3、4张3080ti显卡,5000多张图像数据(8000多个电动车目标)训练迭代200次,模型拟合较好。 4、识别一个类别,分别是“电动自行车” 【备注】有相关使用问题,可以私信留言跟博主沟通。
车牌检测和识别的Python应用软件实现详细过程 1.输入原始图片,通过二值化,边缘检测,和基于色调的颜色微调等办法检测出原图中的车牌号的位置; 2.把检测到的车牌(ROI)裁剪,为车牌号的识别做准备; 3.基于裁剪的车牌号,使用直方图的波峰波谷分割裁剪的车牌号(如上图中的第3步) 4.训练机器学习模型做车牌识别,这里训练了2个SVM,一个SVM用来识别省份简称(如 鲁),另一个SVM用来识别字母和数字。 5.通过PyQt5把整个算法封装成GUI程序,并打包发布安装软件。
2022-11-29 14:32:23 22.17MB 传统图像处理 车牌识别GUI pyqt5 python
将含有条形码信息的图片读入到MATLAB中去,这个图片将以矩阵的形式存储在MATLAB中。这样,我们就能通过对矩阵的运算来实现对图片的处理。由于条形码一般都是黑白的,这样我们的第一步就是要把图片行二值化处理,用于去除那些不需要的细节。然后就要确定条形码所在的位置。这一步至关重要,如果定位不准确,我们就不能获取条形码所有的信息,以至于不能准确的识别。找到条形码准确位置后。就要对条形码信息提取,然后在按照比例将提取到的条形码信息转换成标准模块组成的条形码。最后通过相应的译码得到条形码中的数字,判别是否正确后输出,这样就完成了条形码识别的整个过程。
1
该课题为基于形态学的缺陷检测,素材采用的是光伏板缺陷。通过灰度,二值化,边缘检测,形态学,开闭运算,去除小面积干扰等方法,判断出缺陷所在,定位,并且框出,且计算出各个块面积。配有一个人机交互界面,把缺陷个数,面积等分别显示到GUI界面上。
1
本系统为人体异常行为检测系统 本文件夹下共包含12个文件 其中matlab代码文件9个,视频源文件夹1个(内含4个视频),指导视频一个,说明文档一个 其中仅需要打开Main_Test.fig文件,点击运行即可使用
1