在IT领域,目标检测和跟踪是计算机视觉中的关键任务,广泛应用于智能监控、自动驾驶、无人机导航等场景。本文将深入探讨“yolov5车辆、行人目标跟踪与检测”这一主题,结合“deep_sort”算法,揭示其在目标识别与追踪上的应用。 YOLO(You Only Look Once)是一种实时目标检测系统,最初由Joseph Redmon等人于2016年提出。YOLOv5是YOLO系列的最新版本,以其快速、准确和易于训练的特性而受到业界欢迎。它采用单阶段检测策略,直接预测边界框和类别概率,大大简化了传统两阶段检测器如Faster R-CNN的流程。YOLOv5通过优化网络结构、引入更高效的特征提取器以及自适应锚框等改进,进一步提升了检测性能。 在YOLOv5中,车辆和行人的检测可以通过预训练模型实现。这些模型通常是在大规模标注数据集(如COCO或VOC)上训练得到的,包含了丰富的类别,包括车辆和行人。用户可以下载这些预训练模型,并在自己的图像或视频数据上进行微调,以适应特定场景的需求。 接下来,我们讨论目标跟踪。在视频序列中,目标跟踪是为了在连续帧间保持对同一对象的关注,即使该对象有遮挡、形变、光照变化等情况。DeepSort是一种基于深度学习的多目标跟踪方法,它结合了特征匹配、卡尔曼滤波和马尔科夫随机场模型。DeepSort的核心在于使用特征距离来计算目标之间的相似性,这通常由预训练的卷积神经网络(如MOSSE或DeepCos)提供。它能够计算出具有持久性的特征向量,即使目标短暂消失后也能重新识别出来。 在本项目中,“unbox_yolov5_deepsort_counting-main”可能是一个包含代码和配置文件的项目目录,用于整合YOLOv5和DeepSort的功能。用户可以通过运行这个目录下的脚本来实现车辆和行人的实时检测与跟踪。在这个过程中,YOLOv5首先对每一帧进行检测,生成目标框,然后DeepSort接手进行目标跟踪,为每个目标分配唯一的ID,以便在连续的帧中追踪它们的位置。 总结来说,"yolov5车辆、行人目标跟踪与检测"是一个利用先进计算机视觉技术的实用案例。YOLOv5作为高效的目标检测工具,负责找出图像中的车辆和行人,而DeepSort则确保在视频中连续跟踪这些目标。这种组合在安全监控、交通管理等领域有着广泛的应用前景。通过深入理解并实践这样的项目,我们可以提升对目标检测和跟踪技术的理解,为开发更加智能的视觉应用打下坚实基础。
2025-04-23 19:02:15 596.89MB 目标跟踪
1
内容概要:本文详细介绍了利用自适应遗忘因子递推最小二乘法(AFFRLS)和扩展卡尔曼滤波(EKF)进行锂电池参数和荷电状态(SOC)联合估计的方法。首先介绍了一阶RC模型作为电池的等效电路模型,接着阐述了AFFRLS中自适应遗忘因子的作用以及其实现细节,然后讲解了EKF在非线性环境下的应用,特别是在SOC估计中的具体步骤。最后讨论了两种算法的联合使用策略,包括参数和状态的双时间尺度更新机制,并提供了具体的MATLAB代码实现。 适合人群:从事电池管理系统的研发人员、对电池状态估计感兴趣的科研工作者和技术爱好者。 使用场景及目标:适用于需要精确估计锂电池参数和SOC的应用场合,如电动汽车、储能系统等。主要目标是提高SOC估计的准确性,减少误差,确保电池的安全性和可靠性。 其他说明:文中提到多个注意事项,如OCV-SOC曲线的构建、初始参数的选择、协方差矩阵的初始化等。此外,还提供了一些调参经验和常见问题的解决方案,帮助读者更好地理解和应用这些算法。
2025-04-23 17:19:08 1.06MB
1
基于容积卡尔曼滤波(CubatureKalmam Filter, CKF)的车辆状态观测器 Carsim与Simulink联合 可生成C代码 ?CKF算法使用子函数形式编程,在定义好状态方程和观测方程的前提下,可以方便的进行二次开发 可估计车辆纵向车速,质心侧偏角(或侧向车速,默认发质心侧偏角),横摆角速度和四个车轮侧向力(效果见图) Carsim2018 兼容Carsim2019 带有详细注释和说明文档 Carsim与Simulink联合估计难度与单纯的Simulink模型估计难度不同 用Carsim做状态估计的难度在于carsim的车辆模型完全是黑箱状态,为了获得较好的估计结果需要不断的调整车辆模型参数 估计的参数较多也增加了估计难度,比如估计侧向车速需要用到轮胎侧向力,但轮胎侧向力也是需要通过估计获得的,这样就会存在误差的累积,因此估计的参数越多难度越大
2025-04-22 14:56:05 700KB
1
在计算机视觉领域,目标检测、实例分割和人体姿态估计是三个关键的技术,它们在自动驾驶、监控分析、视频处理等应用场景中发挥着重要作用。基于yolov8的框架,我们可以实现这些功能并进行高效的实时处理。这里我们将深入探讨这些知识点。 **一、目标检测** 目标检测(Object Detection)是计算机视觉的基础任务之一,旨在识别图像中的物体并确定其位置。YOLO(You Only Look Once)系列是快速目标检测算法的代表,由Joseph Redmon等人提出。YOLOv8是对前几代YOLO的改进版本,它可能包括更优化的网络结构、更快的推理速度以及更高的检测精度。YOLOv8通过将图像划分为网格,并预测每个网格中的边界框和类别概率,来实现对多个目标的同时检测。 **二、实例分割** 实例分割(Instance Segmentation)是目标检测的进一步扩展,它不仅指出图像中有哪些物体,还能区分同一类别的不同物体。在YOLOv8的基础上,可能采用了Mask R-CNN或其他实例分割技术,对每个检测到的目标提供像素级别的分割掩模,从而实现精确到个体的分割。 **三、人体姿态估计** 人体姿态估计(Human Pose Estimation)是指识别图像或视频中人物的关键关节位置,如肩、肘、膝等。这一任务在运动分析、动作识别等领域具有广泛应用。结合YOLOv8的检测能力,可以先定位人物,然后利用专门的人体姿态估计算法(如OpenPose或者HRNet)来估计各个关节的位置。 **四、目标跟踪** 目标跟踪(Object Tracking)是指在连续的视频帧中,一旦发现目标,就持续追踪其运动轨迹。在YOLOv8的基础上,可能会集成如BoTSORT或ByteTrack这样的跟踪算法。这些跟踪器能够跨帧关联检测到的物体,保持对目标的连续追踪,即使目标暂时被遮挡也能恢复跟踪。 **五、RTSP视频源** RTSP(Real Time Streaming Protocol)是一种用于流媒体传输的协议,常用于实时视频流的处理。在YOLOv8的应用场景中,通过RTSP输入视频源,使得系统可以直接处理来自网络摄像头或者其他实时视频流的数据,实现对实时视频的检测、分割和跟踪。 总结来说,基于YOLOv8的系统集成了目标检测、实例分割、人体姿态估计和目标跟踪四大核心功能,支持RTSP视频源,这使得它能够广泛应用于安全监控、智能交通、体育分析等多个领域。提供的代码和模型使得用户可以快速部署和应用这些技术,无需从零开始构建整个系统。通过深入理解这些技术,开发者和研究人员能够在实际项目中实现更加智能和精准的视觉分析。
2025-04-21 14:39:53 79.34MB 目标检测 实例分割 人体姿态 目标跟踪
1
基于扩展卡尔曼滤波的永磁同步电机直接转矩控制仿真模型研究与应用,基于扩展卡尔曼滤波的永磁同步电机直接转矩控制仿真模型研究及实现,基于扩展卡尔曼滤波的永磁同步电机直接转矩控制仿真模型 可正常运行 ,基于扩展卡尔曼滤波; 永磁同步电机; 直接转矩控制; 仿真模型; 正常运行,扩展卡尔曼滤波驱动的永磁同步电机直接转矩控制仿真模型:稳定运行 在电力传动系统中,永磁同步电机(PMSM)因其高效、高精度和良好的稳定性而被广泛应用。直接转矩控制(DTC)作为一种先进的电机控制策略,能够实现电机转矩的快速响应和精确控制。然而,传统的DTC策略在存在参数不确定性和外部干扰时,可能会导致控制性能下降。为了解决这一问题,扩展卡尔曼滤波(EKF)被引入到PMSM的DTC系统中,用以提高系统的鲁棒性和控制精度。 扩展卡尔曼滤波是一种非线性状态估计技术,它通过建立系统的动态模型,并结合实时的观测数据,对系统的状态进行估计和预测。在PMSM的DTC系统中,EKF可以有效地估计电机的磁链和转矩,从而对电机的运行状态进行准确的控制。通过EKF的滤波作用,可以减少测量噪声和模型误差对系统性能的影响,提高控制策略的稳定性和准确性。 仿真模型是研究和验证控制策略的重要手段。通过构建基于扩展卡尔曼滤波的永磁同步电机直接转矩控制仿真模型,研究人员可以在计算机上模拟电机的实际运行情况,对控制策略进行测试和优化。这些仿真模型通常需要包括电机的电磁模型、机械模型以及控制算法模型,以确保能够全面反映电机控制过程中的各种因素。 在实施仿真模型的过程中,需要考虑诸如电机参数、控制算法参数、负载特性以及环境因素等多种因素的影响。仿真结果的准确性与这些参数的设定密切相关。因此,在仿真之前,需要对电机的实际参数进行精确测量,并在模型中进行相应的设置。此外,控制算法的编程实现也是仿真模型能否成功运行的关键。 针对给定的文件信息,可以归纳出以下几点知识: 1. 扩展卡尔曼滤波(EKF)技术在永磁同步电机(PMSM)控制中的应用,能够显著提升系统的鲁棒性和控制精度。EKF在处理非线性问题时的优势,使其成为优化电机控制性能的理想选择。 2. 直接转矩控制(DTC)策略在PMSM控制中的重要性。DTC因其直接控制电机的转矩和磁链,而不依赖于电机的精确模型,因此具有快速动态响应和简单实现的优点。 3. 仿真模型在电机控制策略研究中的核心地位。通过仿真模型,研究人员可以在不受实际物理条件限制的情况下,对控制策略进行全面的测试和评估。 4. 仿真模型的实现需要注意参数的准确性。无论是电机的物理参数、控制算法参数还是环境因素,都应当尽可能地接近真实情况,以保证仿真结果的可靠性。 5. 文件名称列表中所包含的各种文件格式,如.doc、.html、.txt和.jpg等,反映出研究文档的多方面内容,包括研究论文、网页内容和图像资料,以及可能的实验数据记录。 6. 标签“哈希算法”虽然与主要研究内容不直接相关,但它可能是研究过程中的辅助工具或用于某些特定功能的实现,如数据加密、安全校验等。 根据上述知识,可以得出结论,本研究的主要贡献在于将扩展卡尔曼滤波技术与直接转矩控制相结合,应用于永磁同步电机的仿真模型中,旨在提高电机控制系统的性能和稳定性。通过建立精确的仿真模型,并在模型中实施优化的控制策略,研究人员能够有效验证其控制方法的有效性,并为进一步的理论研究和工程实践提供了有力的工具。
2025-04-18 10:25:50 1.74MB 哈希算法
1
卡尔曼滤波是一种在存在不确定性的情况下估计和预测系统状态的强力工具,在目标跟踪、导航和控制等领域作为基础组件被广泛使用。卡尔曼滤波算法虽然概念简单,但是许多关于这一主题的资源需要深厚的数学背景,并且常常缺少实际例子和图解,这使得该算法比必要的更加复杂。因此,Alex Becker在2017年创建了一个基于数值示例和直观解释的在线教程,以使这一主题更加易于接近和理解。该教程提供了涵盖一维和多维卡尔曼滤波器的入门级材料。随着时间的推移,他收到了许多请求,希望加入更多高级主题,如非线性卡尔曼滤波器(扩展卡尔曼滤波器和无迹卡尔曼滤波器)、传感器融合和实际实施指南。Alex Becker根据在线教程中的材料,编著了《Kalman Filter from the Ground Up》这本书。 《Kalman Filter from the Ground Up》这本书是卡尔曼滤波领域的一本自学资料。首先版发布于2023年5月,随后在5月和6月进行了少量的打字错误更正。该书的版权归属于作者Alex Becker,书号为ISBN 978-965-598-439-2。本书的目标是为那些希望掌握卡尔曼滤波器基础和高级应用的人提供一本实用的教材。Alex Becker在书中阐述了卡尔曼滤波的理论基础,并通过大量实例向读者展示了如何在不同场合应用这些理论。书中的第一部分介绍了卡尔曼滤波算法的基础知识,包括其数学原理和简单的应用实例。接着,作者在后续章节中逐步引入了扩展卡尔曼滤波器和无迹卡尔曼滤波器等非线性处理方法,这些内容对读者掌握现代滤波技术至关重要。此外,书中还包含传感器融合技术的介绍,这通常在多个传感器数据需要融合处理的场合下非常有用。作者还提供了关于如何在实际项目中实施卡尔曼滤波器的实践指南,这些指南对于将理论应用到实际问题中具有重要的参考价值。 本书的出版,为工程师和技术人员提供了一套完整的卡尔曼滤波学习资料。这些资料不仅限于理论的阐述,更通过实例和实践指南,帮助读者理解如何在现实世界的问题中应用卡尔曼滤波技术。读者可以通过学习本书,建立起扎实的卡尔曼滤波理论基础,并能够运用这些知识解决实际问题。 卡尔曼滤波算法的重要性在于其在控制系统中预测和估计状态的能力。这种算法在处理具有随机噪声的动态系统时尤为有效,因为其能够从不完整的或有噪声的测量中,估计出系统的最可能状态。通过这种方式,卡尔曼滤波器广泛应用于机器人学、卫星导航、计算机视觉、经济学和信号处理等领域。尽管本书着重于基本理论和算法,但它的实用性和易于理解的特点使得其成为工程实践者的重要参考书籍。 另外,作者在版权部分明确指出,未经事先书面许可,任何部分均不得复制、存储于检索系统,或以任何形式或任何手段传输。这一声明强调了对作者知识产权的尊重,并要求使用本书内容时需遵守相关法律规定。 《Kalman Filter from the Ground Up》是一本适合对卡尔曼滤波感兴趣的读者从基础到进阶知识进行全面学习的资源。无论是学生、工程师还是研究人员,都可以通过这本书深入学习并掌握卡尔曼滤波的核心理论与应用技巧。
2025-04-11 19:58:23 10.43MB Kalman Filter Extended Kalman
1
基于MATLAB的自适应容积卡尔曼滤波(ACKF_Q)源代码:优化状态协方差Q的估计误差降低技术,【ACKF_Q】基于MATLAB的自适应ckf(容积卡尔曼滤波)源代码,通过自适应状态协方差Q来实现,得到了比传统方法更低的估计误差。 适用于Q无法获取、估计不准、变化不定的情况。 只有一个m文件,方便运行,包运行成功 ,基于MATLAB; 自适应ckf; 容积卡尔曼滤波; 自适应状态协方差Q; 估计误差; 无法获取Q; 估计不准确; 变化不定的Q情况; m文件实现。,自适应容积卡尔曼滤波(ACKF)源码:误差更低,状态协方差Q自适应调整
2025-03-30 14:35:36 229KB 柔性数组
1
卡尔曼滤波(Kalman filtering)作为一种利用线性系统状态方程对系统状态进行最优估计的算法,自其诞生以来便在多个领域得到了广泛的应用。它能够从一系列存在测量噪声的数据中估计动态系统的状态,为现代控制理论和技术的发展做出了重要贡献。本文将对卡尔曼滤波的概述、原理及应用进行详细介绍。 卡尔曼滤波作为一项重要的数据处理技术,在众多领域内均有着不可或缺的作用。下面将从卡尔曼滤波的概述、原理及其应用三个方面展开详细介绍。 ### 一、卡尔曼滤波概述 卡尔曼滤波是一种高效的递归滤波算法,主要用于解决线性动态系统中的状态估计问题。该算法的核心在于如何从含有噪声的测量数据中提取出动态系统的真实状态。卡尔曼滤波具有实时性、精确性和稳定性等优点,能够在噪声干扰下准确地恢复出真实数据,为动态系统的状态估计提供了强有力的工具。 卡尔曼滤波自问世以来,因其独特的性能优势,在多个领域得到了广泛的应用和发展。例如,在航空航天领域,卡尔曼滤波被用来实现飞行器的精确导航和控制;在汽车行业中,则被用于提高汽车导航系统的准确度;此外,在机器人技术、信号处理与通信、经济学和金融等多个领域也有着重要的应用价值。 ### 二、卡尔曼滤波原理 #### 1. 基本原理 卡尔曼滤波的基本原理基于线性动态系统的状态空间表示法,其基本假设包括: - 系统状态的变化是线性的; - 过程噪声和观测噪声都服从高斯分布; - 系统的状态与观测之间的关系也是线性的。 卡尔曼滤波算法通过两个关键步骤实现系统状态的最优估计: - **预测**:根据上一时刻的状态估计值以及系统动力学模型,预测当前时刻的状态及其协方差矩阵。 - **更新**:利用当前时刻的观测数据,结合卡尔曼增益,对预测的状态进行修正,获得更准确的状态估计值。 #### 2. 预测步骤 在预测步骤中,卡尔曼滤波器根据系统的动态模型和前一时刻的状态估计值,对当前时刻的状态进行初步预测。具体包括两部分内容: - **状态预测**:使用系统的状态转移矩阵预测下一时刻的状态向量。 - **协方差预测**:预测状态向量的估计不确定度(协方差矩阵),反映了预测状态的准确性。 #### 3. 更新步骤 更新步骤是卡尔曼滤波器的核心,其目的是通过利用新获得的观测数据来校正预测状态,提高状态估计的精度。主要包括: - **卡尔曼增益计算**:计算一个加权因子,用以决定观测数据与预测结果的相对重要性。 - **状态更新**:利用卡尔曼增益对预测值和观测值进行加权,得到更新后的状态估计值。 - **协方差更新**:更新状态估计的协方差矩阵,以反映新的不确定性水平。 通过不断迭代预测和更新两个步骤,卡尔曼滤波器能够实现实时、精确的状态估计。 ### 三、卡尔曼滤波应用 卡尔曼滤波在多个领域具有广泛的应用价值: 1. **航空航天领域**:卡尔曼滤波在航空航天领域的应用主要体现在飞行器的导航和控制系统中。通过对飞行器的位置、速度和姿态角进行实时估计,帮助飞行器实现精确的轨迹控制和导航。 2. **汽车导航系统**:卡尔曼滤波可以融合来自GPS、地图和传感器等多种数据源的信息,实现对车辆位置的精确估计,提高导航系统的准确性和可靠性。 3. **机器人导航与控制**:卡尔曼滤波在机器人领域的应用涉及机器人的导航、定位和控制等方面。通过对机器人运动状态和环境信息的实时估计,帮助机器人实现自主导航和精确控制。 4. **信号处理与通信**:卡尔曼滤波在信号处理和通信领域中可以用于滤波和去噪,提高信号质量。此外,还能用于信道估计和均衡,改善通信系统的性能。 5. **经济学和金融领域**:在经济学和金融领域,卡尔曼滤波可用于时间序列分析和预测。通过对经济指标或金融数据的滤波处理,提取出有用信息,为决策和预测提供支持。 ### 四、总结 卡尔曼滤波作为一种高效的递归滤波器,通过利用系统状态方程和观测数据对系统状态进行最优估计,为多个领域提供了强大的数据处理和控制手段。随着技术的不断发展和应用需求的增加,卡尔曼滤波将在更多领域发挥更大的作用。未来,卡尔曼滤波将与大数据、人工智能等先进技术相结合,为各个领域提供更加智能、高效的数据处理和控制解决方案。同时,随着对卡尔曼滤波原理的深入研究和改进,其性能和应用范围也将得到进一步提升和拓展。卡尔曼滤波作为一种强大的数据处理和控制技术,具有广阔的应用前景和潜力,将继续为各个领域的发展做出重要贡献。
2025-01-10 12:36:47 103KB 卡尔曼滤波
1
MATLAB基于卡尔曼滤波的锂蓄电池SOC设计 用自适应卡尔曼滤波方法,基于锂离子动力电池等效电路模型,在未知干扰噪声环境下,在线估计电动汽车锂离子动力电池荷电状态 (SOC)。 采用基本卡尔曼滤波和扩展卡尔曼滤波方法估计电池SOC时,?一般假定噪声为零均值白噪声,且噪声方差已知。 在噪声确定的情况下,基本卡尔曼滤波和扩展卡尔曼滤波方法的估计效果很好,但实际上白噪声不存在。 重述: 使用自适应卡尔曼滤波方法,MATLAB基于锂离子动力电池的等效电路模型设计了一种在线估计电动汽车锂离子动力电池荷电状态(SOC)的方法,以解决未知干扰噪声的环境下的问题。 在估计电池SOC时,采用了基本卡尔曼滤波和扩展卡尔曼滤波方法。通常假设噪声为零均值白噪声且噪声方差已知。虽然基本卡尔曼滤波和扩展卡尔曼滤波方法在噪声方差确定的情况下有很好的估计效果,但实际情况下不存在白噪声。 涉及的 - 锂蓄电池 - 卡尔曼滤波 - SOC(State of Charge,荷电状态) - 锂离子动力电池 - 等效电路模型 相关 1. 锂蓄电池:锂蓄电池是一种充电电池,利用锂离子在正负极之间移动,并在充放电
2024-12-29 19:01:13 65KB matlab
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-10-14 17:29:32 2.19MB matlab
1