样本图:blog.csdn.net/FL1623863129/article/details/144466029 文件放服务器下载,请务必到电脑端资源预览或者资源详情查看然后下载 数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件) 图片数量(jpg文件个数):2602 标注数量(json文件个数):2602 标注类别数:3 标注类别名称:["claystone","silt","mediumsand"] 每个类别标注的框数: claystone count = 4264 silt count = 4 mediumsand count = 4 使用标注工具:labelme=5.5.0 标注规则:对类别进行画多边形框polygon 重要说明:可以将数据集用labelme打开编辑,json数据集需自己转成mask或者yolo格式或者coco格式作语义分割或者实例分割 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注
2025-09-26 21:34:15 407B 数据集
1
数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):3890 标注数量(xml文件个数):3890 标注数量(txt文件个数):3890 标注类别数:1 标注类别名称:["defect"] 每个类别标注的框数: defect 框数 = 4044 总框数:4044 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注 更多信息:https://blog.csdn.net/FL1623863129/article/details/141474618
2025-09-26 15:30:05 159.68MB 数据集
1
电力场景电气设备红外图像变压器检测数据集VOC+YOLO格式4271张14类别,是一份详尽的图像数据集,主要用于电力设备检测领域中的变压器检测。这份数据集包含了4271张红外图像,每张图片都对应一张VOC格式的xml文件和YOLO格式的txt文件,用以支持图像的物体识别和定位任务。 数据集采用Pascal VOC格式和YOLO格式结合的方式提供,其中VOC格式包含图像标注的矩形框、类别等信息,而YOLO格式则适用于YOLO系列目标检测算法。数据集中不包含分割路径的txt文件,仅限于图片、VOC格式xml标注文件和YOLO格式txt标注文件。 数据集共标注有14种不同的类别,每个类别都有详细的标注信息,这些类别包括但不限于空气断路器(ACB)、电流互感器(CT)、连接器(Connection)、避雷器(LA)、负荷开关(LBS)等。每张图片中,相应的类别都有对应的矩形框来标定其位置。 具体到每个类别的标注框数,数据集中标注最多的类别为“Connection”,框数达到了3961个,而“core”类别标注的框数最少,为699个。这14个类别总共标注了11896个框。这些数据标注均使用了labelImg工具进行,标注规则是为每个类别画出矩形框。 需要注意的是,尽管这份数据集为电力设备检测提供了极为宝贵的信息和便利,但数据集提供者并不对使用这些数据训练出的模型或权重文件的精度提供任何保证。使用者应自行评估数据集的适用性和准确性,对模型的性能负责。 数据集的使用场景主要集中在电力设备,尤其是变压器的检测工作。通过这些红外图像和对应的标注,研究人员和工程师可以构建和训练目标检测模型,以实现对电力设备缺陷和异常状态的自动检测。这不仅提高了检测的效率,而且对于保障电力系统的稳定运行和预防事故的发生都具有重要的意义。 值得注意的是,该数据集的下载地址为下载.csdn.net/download/2403_88102872/90089745。这一资源对于需要进行相关研究的科研人员和工程师来说是一个宝贵的资料库。
2025-09-25 13:38:47 1006KB 数据集
1
白蚁检测数据集是一种专门用于训练和测试计算机视觉算法的数据集合,特别是用于检测和识别白蚁图像的应用。本数据集采用的是Pascal VOC格式与YOLO格式,这两种格式均广泛应用于计算机视觉领域。 Pascal VOC格式是一种常用的图像标注格式,它包含了图像的标注信息,通常以XML文件的形式存在。每张图片都会对应一个XML文件,该文件中详细记录了图像中所有标注对象的位置和类别信息。在Pascal VOC格式中,对象的位置通常用一个矩形框来标注,并记录框的位置信息,即矩形框左上角的x、y坐标以及宽度和高度,同时会给出对应的类别名称。 YOLO(You Only Look Once)格式是一种较为现代的实时对象检测系统,它将对象检测任务作为单个回归问题,直接从图像像素到边界框坐标和类别概率的映射。YOLO格式的标注数据通常为文本文件,每行包含一个对象的信息,包括类别索引和对象中心点的坐标、宽度和高度信息。 此数据集包含了949张白蚁图片,每张图片都按照上述格式进行了标注,其中标注的类别有两个,分别是“termite”(白蚁)和“wings”(翅膀)。数据集中的所有图片均被标注,共有949个XML文件和949个TXT文件,对应标注了2202个标注框。其中,“termite”类别共标注了1879个框,“wings”类别则标注了323个框。标注工具为labelImg,这是一个流行的图像标注工具,被广泛用于目标检测任务的图像标注工作。 需要注意的是,在YOLO格式中,类别顺序并不与VOC格式中的类别名称相对应,而是根据labels文件夹中classes.txt文件的顺序来确定。这意味着在使用YOLO格式数据进行训练时,需要参照classes.txt文件来正确识别类别索引。 此外,数据集制作者声明,该数据集提供的图片和标注均为准确和合理,但不对由此训练出的模型或权重文件的精度提供任何保证。数据集的使用者需要自行评估模型的性能,并对模型在实际应用中可能遇到的精度和泛化能力负责。此外,数据集可能还包含了图片预览和标注样例,以供使用者参考和验证标注的准确性。
2025-09-16 17:35:54 1.99MB 数据集
1
样本图:blog.csdn.net/2403_88102872/article/details/144164506 文件太大放服务器下载,请务必到电脑端资源详情查看然后下载 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2303 标注数量(xml文件个数):2303 标注数量(txt文件个数):2303 标注类别数:1 标注类别名称:["goldfish"] 每个类别标注的框数: goldfish 框数 = 7132 总框数:7132 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注
2025-09-15 15:46:39 407B 数据集
1
内容概要:该数据集专注于课堂上学生的行为检测,特别是针对玩手机和睡觉两种不良行为。数据集由2388张图片组成,每张图片均配有Pascal VOC格式的xml文件和YOLO格式的txt文件作为标注文件,确保了数据的多样性和灵活性。数据集中共包含三种标注类别:“normal”(正常)、“play phone”(玩手机)和“sleep”(睡觉),对应的标注框数量分别为20238、10795和3763,总计34796个框。所有图片和标注均由labelImg工具完成,采用矩形框标注法。; 适合人群:计算机视觉领域研究人员、机器学习爱好者、高校教师及学生等。; 使用场景及目标:①可用于训练和评估课堂行为识别模型,提高课堂管理效率;②适用于研究和开发基于图像的学生行为监测系统,帮助教师及时发现并纠正不良行为。; 其他说明:数据集仅提供准确且合理的标注,不对由此训练出的模型或权重文件的精度作出任何保证。
2025-09-12 10:18:49 558KB 数据集 VOC格式 图像标注
1
煤矿井下作业环境复杂,存在各种潜在的安全风险,其中矿井下作业人员的安全帽佩戴情况是保障安全的重要一环。为了提升煤矿安全管理的智能化水平,科研人员创建了专门针对煤矿井下场景的数据集,特别是针对煤矿工人佩戴安全帽的情况,以及钻场钻机设备的监测。这一数据集采用了Pascal VOC格式与YOLO格式两种通用的数据标注形式,包含了超过七万张标注图片,旨在通过计算机视觉技术,特别是深度学习方法,实现对矿井下作业场景中安全帽佩戴情况的自动检测,以及钻机卡盘等关键设备的监测。 该数据集包含了70677张图片,每张图片均配有对应的标注信息,标注文件包括VOC格式的xml文件和YOLO格式的txt文件。图片分辨率统一为1280x720,覆盖了五种类别的目标,分别为安全帽、煤矿工人、夹持器、钻杆以及钻机卡盘。这些类别分别用中文和英文表示,其中“anquanmao”对应“安全帽”,“gongren”对应“煤矿工人”,“jiachiqi”对应“夹持器”,“zuangan”对应“钻杆”,“zuanjikapan”对应“钻机卡盘”。每个类别都进行了详细的矩形框标注,分别统计出各类别在数据集中所占的框数。例如,“安全帽”标注的框数为31118个,“煤矿工人”标注的框数为39479个,其他类别也有相应的标注数量。 在标注过程中,科研人员使用了名为labelImg的标注工具,这是一种广泛应用于目标检测任务的图像标注工具。对于标注规则,采用了矩形框标注方法,简单直观地对目标类别进行了框选,框选的矩形框精确地覆盖了目标对象。 此外,数据集的制作者也强调了数据集的使用目的,即仅作为提供准确合理标注图片的工具,不包含对最终训练模型或权重文件精度的任何保证。虽然不提供任何关于模型精度的保证,但是数据集的详细和规范的标注为研究人员提供了一个高质量的研究基础,可以应用在深度学习、计算机视觉以及自动化检测等多个领域,以改善矿井作业的安全性,从而有效地预防矿难事故的发生。 重要的是,对于此类数据集的使用,研究者和开发者应当遵守相关的法律和道德标准,确保数据集的应用不会侵犯个人隐私和知识产权,并且不应对真实世界中的作业安全产生负面影响。实际应用中,这套数据集结合相应的图像识别与检测算法,可以大大降低人工监督的工作量,为煤矿井下的作业安全提供实时的智能监测支持。 与此同时,这套数据集的发布也反映了当前机器学习、计算机视觉技术在工业安全领域的应用趋势。随着技术的持续进步,未来有望在矿井监控、自动化巡检、异常事件预测等多方面发挥更大作用,提高矿井工作的自动化与智能化水平,从根本上保障矿工的安全和提高矿井生产效率。
2025-09-11 14:10:00 1.15MB 数据集
1
道路交通拥挤检测数据集是专门用于训练和测试计算机视觉模型在道路交通场景下识别和检测交通拥挤状态的资源。本数据集采用Pascal VOC格式和YOLO格式,包含1899张jpg格式的图片,每张图片都配有对应的VOC格式的xml文件和YOLO格式的txt文件。这些文件共同组成了数据集的标注信息,用于指导模型进行学习和训练。 在本数据集中,标注的对象为“crowd”,即人群,数据集中的所有标注都围绕这个类别进行。VOC格式的xml文件中包含了每个图片中“crowd”出现的位置和相关信息,而YOLO格式的txt文件则提供了另一种格式的标注信息,YOLO是一种流行的实时目标检测系统,它的标注格式适用于其特有的检测模型训练。 数据集中的图片数量、xml标注文件数量以及txt标注文件数量都是1899个,这表明数据集中的每张图片都进行了相应的标注。标注类别数为1,说明数据集中仅关注“crowd”这一个类别,标注类别名称为“crowd”。每个“crowd”标注的框数总计为2273个,这意味着在1899张图片中,人群被识别并框出共2273次,从而提供了足够的训练样本。 数据集采用的标注工具是labelImg,这是一个常用的手动标注工具,它允许标注者通过画矩形框的方式精确地标出图片中的目标。标注规则清晰明确,即对“crowd”类别进行画矩形框,这有助于训练出来的模型在识别场景中人群时更为准确。 关于使用本数据集的声明,出品方强调不对由此数据集训练出的模型或权重文件的精度提供任何保证。这表明数据集的使用者需要自行负责模型的训练和测试,数据集的提供方不承担责任。同时,数据集本身只保证提供的标注信息是准确且合理的。 此外,数据集提供了一个图片预览以及标注例子,以便潜在的使用者可以了解数据集的结构和内容,以及如何进行标注。数据集还有一个明确的数据集地址,方便使用者下载所需的数据文件进行研究和开发。 道路交通拥挤检测数据集VOC+YOLO格式是一个专门为道路交通拥挤状态的检测和识别而设计的数据集。它以标准化的格式提供了一系列经过精确标注的图片资源,适用于训练机器学习和深度学习模型,以提升模型在实时交通监控和管理中的性能和准确性。通过使用这个数据集,研究者和开发者能够构建更加智能化的交通拥挤检测系统,进而帮助改善城市交通状况和提高公共安全水平。
2025-09-09 16:47:40 1011KB 数据集
1
样本图:blog.csdn.net/2403_88102872/article/details/144155983 文件太大放服务器下载,请务必到电脑端资源详情查看然后下载 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):1899 标注数量(xml文件个数):1899 标注数量(txt文件个数):1899 标注类别数:1 标注类别名称:["crowd"] 每个类别标注的框数: crowd 框数 = 2273 总框数:2273 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注
2025-09-09 16:42:18 407B 数据集
1
本篇文档描述了一个关于高铁受电弓检测的数据集,该数据集采用了Pascal VOC格式和YOLO格式,共包含了1245张标注图片。数据集被划分为两个类别,分别是“roi”(Region of Interest,感兴趣区域)和“sdg”(可能为某种特定标识或部件名称)。每个类别的标注框数相同,均为1245个,使得总的标注框数达到2490个。标注文件采用XML格式,与Pascal VOC格式相匹配;同时,每个图片还对应一个YOLO格式的TXT文件,其中包含了用于训练YOLO(You Only Look Once)目标检测模型的标注信息。 数据集中的图片均以.jpg格式存储,标注信息包含在同名的XML文件中,这些XML文件详细记录了每个目标的位置信息以及对应的类别标签。YOLO格式的TXT文件则包含了简化的目标位置信息,格式适合YOLO模型的训练需求。数据集的标注工作是通过labelImg工具完成的,该工具是一款流行的图像标注软件,通常用于机器学习和计算机视觉领域中的目标检测任务。 文档还特别提到,标注工作是通过在目标周围绘制矩形框来实现的。标注的精确度与合理性得到了保证,但文档明确指出不对使用该数据集训练得到的模型或权重文件的精度进行任何保证。数据集的提供者仅确保了标注的准确性和合理性,不承担因使用数据集而产生的任何技术或商业风险。 需要注意的是,文档中没有提及具体的数据集使用示例,可能需要使用者自行探索或查找相关的标注规则以理解数据集的具体使用方法。而“sdg”这一类别名称未给出具体含义,可能是特定行业术语或数据集作者自定义的类别标签,使用时需要参考相关领域的专业知识或联系数据集作者以获取更详细的信息。 这是一个针对高铁受电弓领域特定目标检测任务的专业数据集,适合于使用YOLO等目标检测框架进行模型训练和算法验证的用户。数据集的格式与标注工具的标准化保证了其在计算机视觉领域中的广泛适用性。
2025-09-08 15:37:44 1.26MB 数据集
1