基于MPC的轨迹跟踪控制联合仿真:Simulink与Carsim参数设置详解及效果展示,基于MPC的模型预测轨迹跟踪控制联合仿真simulink模型+carsim参数设置 效果如图 可选模型说明文件和操作说明 ,基于MPC的模型预测; 轨迹跟踪控制; 联合仿真; simulink模型; carsim参数设置; 效果图; 可选模型说明文件; 操作说明,基于MPC的轨迹跟踪控制:Simulink+Carsim联合仿真效果图解析及模型操作指南 在深入探讨基于模型预测控制(Model Predictive Control, MPC)的轨迹跟踪控制联合仿真技术时,我们有必要详细解析Simulink与Carsim这两种仿真软件在参数设置上的细节及其联合仿真效果。Simulink是一个广泛应用于多领域动态系统建模和仿真的软件,其强大的模块化设计能力和丰富的工具箱为复杂系统的分析和设计提供了便利。而Carsim则是专门针对汽车动力学性能仿真的一款软件,可以模拟车辆在各种工况下的动态响应和行为。 本文将详细探讨如何在Simulink与Carsim中进行参数设置,以便实现高效的轨迹跟踪控制联合仿真。我们需要理解MPC的基本原理。MPC是一种先进的控制策略,它通过在每个控制周期内优化未来一段时间内的控制输入,来满足性能指标并保证系统的约束得到满足。MPC在轨迹跟踪中的应用,尤其是在非线性和约束条件较为复杂的车辆控制系统中,展现出了显著的优势。 在Simulink中,MPC控制器的参数设置主要包括模型预测范围、控制范围、控制变量和状态变量的定义,以及预测模型的建立等。此外,控制器的优化算法选择、目标函数和约束条件的设定也是确保轨迹跟踪性能的关键。在Carsim中,我们需要设置车辆的物理参数、环境参数、路面条件等,以确保仿真的真实性和准确性。在两者的联合仿真中,需要确保Simulink中的MPC控制器能够接收Carsim提供的实时车辆状态数据,并进行正确的控制决策输出。 文档中提到的模型说明文件和操作说明可能包括了对仿真模型的详细介绍,以及如何在Simulink和Carsim中进行操作的具体步骤。这些文件对初学者来说尤为宝贵,因为它们可以减少学习曲线,加快仿真模型的搭建速度。联合仿真效果如图所示,意味着通过恰当的参数设置,仿真模型能够在Carsim中实现预定的轨迹跟踪任务,并且可以通过Simulink直观地展示出仿真结果。 联合仿真不仅能够验证MPC算法在车辆轨迹跟踪控制中的有效性,还能够提供一个直观的平台来分析和调整控制策略,以满足不同工况下的性能要求。同时,联合仿真的结果也可以用来指导实际的车辆控制系统的设计和优化,为智能交通系统的开发提供理论基础和实践参考。 在当前智能交通和自动驾驶技术的快速发展背景下,基于MPC的轨迹跟踪控制联合仿真技术显得尤为重要。它不仅有助于解决传统控制策略难以应对的复杂工况问题,还能在保证安全的前提下提高车辆的行驶性能和舒适性。未来,随着算法的不断完善和计算能力的提升,MPC在轨迹跟踪控制领域的应用将更加广泛,并将进一步推动智能交通技术的进步。
2025-03-28 20:02:15 94KB 数据仓库
1
AEB ,自动紧急避撞系统,主动避撞,Carsim Trucksim与simulink联合仿真; 车辆逆动力学模型; 制动安全距离计算; 期望制动加速度; 节气门控制; 制动压力控制; 可实现前车减速,前车静止,前车匀速纵向避撞;
2025-03-27 00:30:26 37KB safari
1
当系统中已经安装老版本的Carsim软件后,如2019版本,当需要安装更新的版本的时候,如2020版本,在常规的安装完成后,打开软件的时候,新版本的软件依然会使用老版本的软件的License,这个时候需要手动更换License 1. 找到新版本的软件安装路径下的LicUtility F:\Program Files (x86)\CarSim2020.0_Prog\Programs(我的路径) 2. 打开LicUtility, 3. 选择 Add/Modify License Search Path 4. 在弹出的文本框内填入新版软件的License的绝对路径, 一般把License放到软
2024-11-28 00:08:19 215KB ar
1
标题中的“预瞄跟踪控制算法”是汽车动态控制系统中的一个重要概念,它涉及到车辆在行驶过程中的路径跟踪和稳定性。预瞄跟踪控制(Predictive Path Tracking Control)是一种先进的控制策略,其核心思想是根据车辆当前状态和未来可能的行驶路径,预测未来的车辆行为,并据此调整车辆的驾驶参数,如转向角或油门深度,以实现精确的路径跟踪。 描述中提到的“单点或多点驾驶员模型”是模拟驾驶员行为的不同方法。单点模型通常简化驾驶员为一个点,考虑其对车辆输入的影响,而多点模型则更复杂,可能包括驾驶员的身体各部位的动作以及视线等多方面的因素,以更真实地模拟驾驶行为。这里的“横制”可能指的是车辆横向动态控制,即车辆在侧向的稳定性和操控性。 “纯跟踪算法”是另一种路径跟踪控制策略,其目标是使车辆尽可能接近预定的行驶轨迹,通常通过优化控制器参数来实现最小误差跟踪。这种算法在自动驾驶和高级驾驶辅助系统(ADAS)中有着广泛应用。 “carsim和MATLAB Simulink联合仿真”意味着使用了两种强大的工具进行系统仿真。CarSim是一款专业的车辆动力学仿真软件,常用于车辆动态性能分析;MATLAB Simulink则是一个图形化建模环境,适合构建和仿真复杂的系统模型。将两者结合,可以创建出详尽的车辆控制系统模型,并进行实时仿真,以便测试和优化控制算法。 标签中的“matlab 算法 范文/模板/素材”表明提供的内容可能包含MATLAB编程的示例、算法实现模板或者相关研究素材,可以帮助学习者理解和应用预瞄跟踪控制算法。 压缩包内的文件可能是关于这个控制算法的详细解释、仿真步骤或者代码示例。"工程项目线上支持预瞄跟踪.html"可能是项目介绍或教程文档,"工程项目线上支持预瞄跟踪控制算.txt"可能是算法描述或代码片段,而"sorce"可能是一个源代码文件夹,包含了实际的MATLAB代码。 这个资料包提供了一个全面的学习资源,涵盖了预瞄跟踪控制算法的设计、驾驶员模型的建立、车辆横向控制的仿真,以及如何使用MATLAB和CarSim进行联合仿真。对于研究汽车控制系统的学者、工程师或是学生来说,这是一个非常有价值的学习材料。通过深入学习和实践,可以掌握高级的车辆动态控制技术,并提升在自动驾驶和汽车电子领域的能力。
2024-11-13 15:54:43 49KB matlab
1
线控制动系统仿真。 Carsim和Simulink联合仿真线控制动系统BBW-EMB系统。 包含简单的制动力分配和四个车轮的线控制动机构 四个车轮独立BLDCM三环PID闭环制动控制,最大真实还原线控制动系统结构。 本模型中未自定义 【踏板力】 模块,但是可以根据自己的需求设置踏板力,如有需要可以自己拿去进一步开发。 【制动力分配】功能采用的是Carsim自带的分配方式,并对该模块进行了模块化设计,也可以根据个人需要进一步开发使用自己设计的模块,使用Carsim自带的是为了更好的与Carsim制动做对比。 模型中未集成Abs功能,如有需要可以去主页中了解abs功能,然后自己集成进去。 图中: 1. Carsim原有的液压制动和本模型线控制动的对比。 2 3 4 5. 模型内图片。 所建模型在采用Carsim制动力分配算法时,可以很好的还原Carsim原有的制动响应。 可以直接拿去做进一步开发。
2024-11-04 09:23:44 448KB
1
在车辆动力学与控制领域,基于Carsim的预瞄PID路径跟踪模型是一种广泛采用的技术,用于确保车辆在复杂路况下能够准确、稳定地追踪预定的行驶路径。CarsimCarSim)是一款强大的汽车动态模拟软件,它能模拟各种车辆动力学行为,并提供了丰富的工具来分析和优化车辆控制系统。 我们要理解PID控制器。PID(比例-积分-微分)控制器是自动控制理论中最基础且应用最广泛的控制器类型。它通过结合比例项(P)、积分项(I)和微分项(D)来调整控制系统的输出,以减小系统误差并实现快速响应。在路径跟踪中,PID控制器负责调整车辆的转向角,使得车辆尽可能接近目标路径。 预瞄技术是PID控制器的一种增强,它在标准PID的基础上引入了对未来目标点的预测。在车辆行驶过程中,预瞄算法会计算出车辆即将到达的点,并根据该点的位置调整PID参数,以提前应对可能的偏差,从而提高路径跟踪的精度和稳定性。 在Carsim中,实现预瞄PID路径跟踪模型通常包括以下几个步骤: 1. **路径规划**:定义车辆需要遵循的路径,这可能包括直线、曲线、坡道等各种地形元素。路径可以由一系列离散的点表示,这些点连接成一条连续的参考路径。 2. **误差计算**:实时计算车辆当前位置与参考路径之间的偏差,包括横向误差(车辆中心线与路径的距离)和纵向误差(车辆沿路径的偏移)。 3. **PID控制器设计**:配置PID控制器的参数,如比例增益(Kp)、积分增益(Ki)和微分增益(Kd),以达到最佳的控制效果。在预瞄PID中,还需要考虑预瞄距离和预瞄时间,以便提前调整控制输入。 4. **预瞄处理**:预测车辆未来的位置,基于这个预测,提前计算PID输出,以减少响应时间和减小误差。 5. **车辆动态模拟**:在Carsim环境中模拟车辆的行为,包括车辆的动力学模型、轮胎模型等,以反映实际驾驶条件下的响应。 6. **反馈与调整**:根据模拟结果调整PID参数,可能需要反复迭代以获得最优性能。 7. **轨迹稳定跟踪**:通过不断调整车辆的转向角,使其能够持续稳定地跟踪预设路径,尤其在蛇形工况下,即连续的弯道,这种控制策略显得尤为重要。 通过以上步骤,基于Carsim的预瞄PID路径跟踪模型可以有效地帮助我们设计和验证汽车的路径跟踪控制策略,确保车辆在各种复杂的驾驶环境中能够安全、准确地行驶。而文件"PID_Path_Tracking"可能包含了实现这一模型的相关代码、配置文件或模拟结果,是深入理解与研究这一技术的重要资源。
2024-10-23 13:07:42 12.61MB carsim 路径跟踪
1
Carsim+Simulink联合仿真,简单的示例。适合初学AEB的同学。
2024-10-10 20:00:40 52KB Carsim
1
基于模型预测控制(MPC)无人驾驶汽车轨迹跟踪控制算法,基于MATLAB/simulink与carsim联合仿真,包含cpar,par,slx文件,支持MATLAB2018和carsim2019版本,先导入capr文件,然后发送到simulink,可支持修改代码,运用S-Function函数编写。 四轮转向汽车轨迹跟踪模型。 基于模型预测控制(MPC)无人驾驶汽车轨迹跟踪控制算法,基于MATLAB/simulink与carsim联合仿真,包含cpar,par,slx文件,支持MATLAB2018和carsim2019版本,先导入capr文件,然后发送到simulink,可支持修改代码,运用S-Function函数编写。 四轮转向汽车轨迹跟踪模型。
2024-04-28 14:08:31 629KB matlab carsim simulink 无人驾驶车辆
1
具有各种输入输出信号详细的Name、Units、类型、部件、全名、图例标签、描述 在做其他软件的联合仿真的时候,需要用到一些Carsim的IO接口,该文档可以有效的帮助刚学习Carsim的同学认识并分别这些信号。
2024-04-11 10:56:02 50KB Carsim matlab
1
CarSim与Simulink联合仿真 以CarSim中所提供的与Simulink联合仿真的一个例子为例(稍有修改),来介绍CarSim与Simulink联合仿真的整个过程。
2024-04-09 16:49:55 2.48MB carsim simulink matlab
1