【内容概要】: 本资源包含SAM2(Segment Anything Model 2)图像分割项目的完整跑通版本,压缩包命名为`segment-anything-2.zip`。该项目利用先进的深度学习技术实现高效、精确的图像实例分割。压缩包内含预训练模型权重、配置文件、示例图像、数据处理脚本及详细的README文档,指导用户如何快速部署和运行模型,实现对任意图像的像素级分割。 【适用人群】: 适合计算机视觉领域的研究者、开发者及对图像分割技术感兴趣的技术人员。对于希望将最新图像分割技术应用于实际项目或研究工作的专业人士尤为适用。 【使用场景】: 广泛应用于物体识别、图像分析、医学影像处理、自动驾驶等领域。无论是科研实验、产品原型开发还是实际应用部署,SAM2都能提供强大、灵活的分割解决方案。 【目标】: 旨在为用户提供一套开箱即用的图像分割工具,帮助快速实现从图像到分割掩膜的转换,提升图像分析精度和效率。通过本资源,用户可以轻松掌握SAM2的核心技术和应用方法,加速项目研发进程。
2025-04-12 12:59:45 344.72MB 深度学习 计算机视觉 自动驾驶 图像分割
1
深度学习在图像融合领域的应用已经取得了显著的进展,这一领域主要关注如何将多源图像的信息有效地结合在一起,生成具有更全面、更清晰视图的新图像。图像融合在遥感、医学影像、计算机视觉等多个领域都有广泛应用,如目标检测、场景理解、图像增强等。本文将对基于深度学习的图像融合技术进行深入探讨。 深度学习是一种模仿人脑神经网络结构的机器学习方法,它通过多层次的非线性变换来自动学习特征表示。在图像融合中,深度学习的优势在于其强大的表征学习能力,能够自动从原始图像中提取高阶特征,这大大简化了传统融合方法中手动设计特征的复杂过程。 目前,深度学习在图像融合中的应用主要包括以下几类模型: 1. **卷积神经网络(CNN)**:CNN是深度学习中最常用的模型,尤其在图像处理任务中。在图像融合中,CNN可以作为特征提取器,将输入图像转换为高级特征表示,然后通过融合策略将这些特征结合。例如,可以采用两个或多个预训练的CNN模型分别处理源图像,提取各自的特征,再通过某种融合规则(如加权平均、最大值选择等)生成融合特征,最后通过上采样或解码器重构出融合图像。 2. **生成对抗网络(GAN)**:GAN由生成器和判别器两部分组成,通过对抗性训练来提高生成图像的质量。在图像融合中,生成器可以学习将不同图像的信息融合成高质量的图像,而判别器则负责区分真实图像与生成的融合图像。这种框架能有效提升融合图像的细节和真实感。 3. **变形卷积网络(DCN)**:变形卷积允许滤波器的形状随输入的空间变化而变化,更适合处理图像变换问题。在图像融合中,它可以更好地适应源图像的几何变化,提高融合结果的准确性。 4. **自编码器(AE)**和**变分自编码器(VAE)**:自编码器通过学习数据的低维表示,实现数据的降维和重构,而变分自编码器则引入了随机性,可以用于生成新的图像。在图像融合中,可以通过自编码器学习源图像的潜在表示,然后将这些表示进行融合,最后通过解码器恢复出融合图像。 5. **U-Net**和其他全卷积网络:这类网络结构在图像分割和重建任务中表现出色,其特点在于跳跃连接,可以保留原始输入的详细信息,这对于图像融合中保持边缘清晰和细节完整至关重要。 在实际应用中,深度学习模型的性能受到多个因素的影响,包括网络结构的选择、损失函数的设计、训练数据的质量和多样性以及超参数的调整等。为了优化模型,通常需要大量的标注数据进行训练,并可能涉及迁移学习、数据增强等技术。 总结来说,基于深度学习的图像融合已经成为该领域的一个重要研究方向,不断推动着图像融合技术的进步。随着深度学习模型的不断发展和优化,未来有望实现更高效、更高质量的图像融合效果,服务于更多实际应用场景。
2025-04-12 12:42:07 93.11MB 深度学习
1
图像融合技术在医学领域具有重要的研究价值和应用前景。传统的图像融合方法通常依赖于手工设计的规则和算法,但随着人工智能技术的发展,尤其是深度学习技术的广泛应用,基于深度学习的医学图像融合方法逐渐成为研究热点。这类方法利用深度神经网络强大的特征提取和信息融合能力,能够有效地整合来自不同成像模态(如CT、MRI、PET等)的医学图像数据,生成具有更高信息密度和诊断价值的合成图像。其优势在于能够自动地从大量数据中学习到复杂的特征表示和融合策略,避免了传统手工设计方法的局限性。 在基于深度学习的医学图像融合的流程中,数据预处理是一个重要的步骤,它包括对原始图像进行去噪、归一化和标准化等操作,以确保图像数据的质量和网络的训练效果。特征提取通常采用卷积神经网络(CNN)来完成,网络如U-Net、VGG、ResNet等,通过卷积层、池化层和反卷积层等结构,提取不同模态图像的关键特征。融合模块是深度学习医学图像融合的核心,设计的特殊融合层或网络结构,如注意力机制或加权平均,可结合不同模态的特征图,赋予各模态相对的重要性,实现信息的有效整合。整个过程是端到端的训练,深度学习模型自动学习如何最优地融合各个模态的信息,无需手动设计规则。 在实际应用中,模型训练完成后,需要通过验证集和测试集来评估模型性能,评估指标包括PSNR、SSIM、DSC等。如果效果不理想,则需要对网络架构、超参数进行优化调整,或增加更多的训练数据。成功融合的图像可以应用于临床诊断、病理分析和治疗规划等多个环节,提高诊断的准确性和治疗的精准性。 在【图像融合】基于matlab深度学习医学图像融合【含Matlab源码 8038期】这篇文章中,作者不仅详细介绍了深度学习在医学图像融合中的应用原理和流程,还提供了一套完整的Matlab源码,使得读者能够通过运行main.m一键出图,直观感受深度学习在医学图像融合中的实际效果。文章中也展示了实际的运行结果图像,证明了方法的有效性。此外,作者还给出了Matlab版本信息和相关的参考文献,为感兴趣的读者提供了进一步深入学习和研究的方向。通过这篇文章,读者可以较为全面地了解基于Matlab和深度学习技术在医学图像融合领域的应用。
2025-04-12 12:25:43 12KB
1
2020-4-24 最新版yolov4权重,从google盘下载,文件245MB,超过上传限制,已传百度云,https://github.com/AlexeyAB/darknet,
2025-04-12 10:51:55 147B yolov4 darknet 深度学习
1
基于深度学习的YOLOv安全帽佩戴实时检测与目标追踪,可视化界面展示,yolov安全帽佩戴检测,目标检测,附带可视化界面。 ,核心关键词:yolov安全帽佩戴检测; 目标检测; 可视化界面。,"YoloV安全帽佩戴智能检测系统:目标检测与可视化界面" 深度学习技术近年来在目标检测领域取得了显著的进步,特别是在特定场景下的应用,如安全帽佩戴检测。YOLOv(You Only Look Once version)是一种流行的实时目标检测算法,其快速性和准确性在多种实际场景中得到了验证。本文档聚焦于基于YOLOv的安全帽佩戴实时检测技术,该技术不仅能够实现对佩戴安全帽的工人的实时监控,还能够对检测结果进行可视化展示,从而提高作业现场的安全管理水平。 YOLOv算法通过将目标检测任务转化为一个单一的回归问题,极大地提升了检测速度,使其适用于对实时性要求较高的场景。安全帽佩戴检测利用YOLOv算法,通过训练特定的数据集,使其能够识别出是否佩戴了安全帽,这在施工、矿场等高风险作业环境中尤为重要。通过实时监测,系统能够在第一时间内发现未正确佩戴安全帽的工人,从而及时提醒或采取措施,预防事故的发生。 可视化界面作为该系统的重要组成部分,提供了直观的操作和查看方式。它不仅能够实时展示检测结果,还可以通过图表、视频等形式,让用户更直观地了解现场工人的安全状况。在实际应用中,可视化界面的设计要考虑到易用性、实时性和准确性,确保信息传达的有效性。 文档中提到的“剪枝”技术在深度学习模型优化中扮演着重要角色。剪枝是一种模型压缩技术,目的是去除神经网络中不必要的参数或层,以此减少模型的大小和计算复杂度,同时尽量保留模型的性能。在安全帽佩戴检测系统中,使用剪枝技术可以使得模型更加轻量化,提高运行速度,减少资源消耗,从而更适用于硬件资源有限的现场环境。 此外,文档中还包含了一系列的文件名称,这些文件可能是文章、说明文档或相关的数据资料。其中“近年来随着人工智能技术的飞速发展目标检测已成.doc”和“安全帽佩戴检测是一种基于目标检测算法的技.doc”可能是对技术背景和方法的介绍;而“文章标题基于的安全帽佩戴检测实现目标检测与可视化.html”和“安全帽佩戴检测目标检测附带可视化界面.html”则可能是对系统功能和界面设计的说明。 安全帽佩戴检测系统的开发和应用,对于提升工作场所的安全监管有着重要意义。通过利用先进的深度学习技术和高效的模型优化方法,可以构建出既准确又高效的智能安全监控系统,为安全生产提供强有力的技术支持。未来,随着技术的不断进步和算法的优化,这类系统有望在更多行业和领域得到广泛应用,进一步提高人类生产活动的安全水平。
2025-04-12 10:29:24 1.22MB
1
Fortran,全称为Formula Translation,是一种历史悠久的编程语言,尤其在科学计算领域有着广泛的应用。对于初学者,尤其是“小白”级别的新手来说,掌握Fortran的基础知识是进入这个领域的第一步。本教程旨在提供一个适合入门的中文学习路径,帮助你快速理解和上手Fortran。 一、安装Fortran编译器 在开始学习之前,你需要安装一个Fortran编译器。常见的Fortran编译器有GFortran(GNU Fortran Compiler)和Intel Fortran Compiler等。GFortran是开源的,适用于多种操作系统,包括Windows、Linux和macOS。在Windows上,你可以通过MinGW或GCC套件获取GFortran;在Linux或macOS上,通常可以通过包管理器(如apt、yum或brew)进行安装。 二、编译器使用 1. 创建源代码文件:使用文本编辑器创建一个扩展名为`.f90`或`.f`的文件,这是Fortran90及以上版本的标准格式。 2. 编写代码:按照Fortran的语法规则编写程序。Fortran的基本结构包括模块(MODULE)、程序单位(PROGRAM)、子程序(SUBROUTINE)和函数(FUNCTION)等。 3. 编译代码:使用编译器将源代码转换为可执行文件。例如,如果你使用GFortran,可以输入`gfortran my_program.f90 -o my_program.exe`进行编译。 4. 运行程序:在成功编译后,通过命令行运行生成的可执行文件,例如`./my_program.exe`。 三、Fortran基础知识 1. 变量与数据类型:Fortran支持各种基本数据类型,包括实型(REAL)、整型(INTEGER)、字符型(CHARACTER)和逻辑型(LOGICAL)。变量声明通常在程序的开头,如`REAL :: x, y`声明两个实型变量x和y。 2. 控制流:Fortran提供了IF-THEN-ELSE语句进行条件判断,DO循环用于迭代,以及CASE语句实现多分支选择。 3. 输入输出:使用`READ`和`WRITE`语句进行数据的输入输出,也可以使用`INQUIRE`查询文件状态。例如,`READ(*,*) x, y`从标准输入读取两个值赋给x和y。 4. 函数与子程序:Fortran中的函数可以返回一个值,而子程序不返回值,它们都可以接受参数并进行处理。 5. 数组:Fortran支持一维、二维甚至多维数组。数组声明时可以指定维度,如`REAL, DIMENSION(10) :: arr`声明一个包含10个元素的实型数组。 四、Fortran的现代特性 随着Fortran的发展,它引入了许多现代编程语言的特性,如面向对象编程、模块化、以及更灵活的内存管理。了解这些特性将使你的代码更加高效和易于维护。 五、实践与进阶 理论知识学习完成后,你需要通过编写实际的程序来巩固所学。可以从简单的算术运算开始,逐渐尝试解决复杂的科学计算问题。同时,不断查阅文档、参考书籍和在线资源,提高对Fortran的理解和应用能力。 本教程将引导你逐步了解和掌握Fortran编程,从安装编译器到编写和运行第一个程序,再到深入学习其语法和特性。无论你是出于学术研究还是工作需求,这都将是一个很好的起点。
2025-04-11 22:33:40 150KB 课程资源 fortran
1
卡尔曼滤波是一种在存在不确定性的情况下估计和预测系统状态的强力工具,在目标跟踪、导航和控制等领域作为基础组件被广泛使用。卡尔曼滤波算法虽然概念简单,但是许多关于这一主题的资源需要深厚的数学背景,并且常常缺少实际例子和图解,这使得该算法比必要的更加复杂。因此,Alex Becker在2017年创建了一个基于数值示例和直观解释的在线教程,以使这一主题更加易于接近和理解。该教程提供了涵盖一维和多维卡尔曼滤波器的入门级材料。随着时间的推移,他收到了许多请求,希望加入更多高级主题,如非线性卡尔曼滤波器(扩展卡尔曼滤波器和无迹卡尔曼滤波器)、传感器融合和实际实施指南。Alex Becker根据在线教程中的材料,编著了《Kalman Filter from the Ground Up》这本书。 《Kalman Filter from the Ground Up》这本书是卡尔曼滤波领域的一本自学资料。首先版发布于2023年5月,随后在5月和6月进行了少量的打字错误更正。该书的版权归属于作者Alex Becker,书号为ISBN 978-965-598-439-2。本书的目标是为那些希望掌握卡尔曼滤波器基础和高级应用的人提供一本实用的教材。Alex Becker在书中阐述了卡尔曼滤波的理论基础,并通过大量实例向读者展示了如何在不同场合应用这些理论。书中的第一部分介绍了卡尔曼滤波算法的基础知识,包括其数学原理和简单的应用实例。接着,作者在后续章节中逐步引入了扩展卡尔曼滤波器和无迹卡尔曼滤波器等非线性处理方法,这些内容对读者掌握现代滤波技术至关重要。此外,书中还包含传感器融合技术的介绍,这通常在多个传感器数据需要融合处理的场合下非常有用。作者还提供了关于如何在实际项目中实施卡尔曼滤波器的实践指南,这些指南对于将理论应用到实际问题中具有重要的参考价值。 本书的出版,为工程师和技术人员提供了一套完整的卡尔曼滤波学习资料。这些资料不仅限于理论的阐述,更通过实例和实践指南,帮助读者理解如何在现实世界的问题中应用卡尔曼滤波技术。读者可以通过学习本书,建立起扎实的卡尔曼滤波理论基础,并能够运用这些知识解决实际问题。 卡尔曼滤波算法的重要性在于其在控制系统中预测和估计状态的能力。这种算法在处理具有随机噪声的动态系统时尤为有效,因为其能够从不完整的或有噪声的测量中,估计出系统的最可能状态。通过这种方式,卡尔曼滤波器广泛应用于机器人学、卫星导航、计算机视觉、经济学和信号处理等领域。尽管本书着重于基本理论和算法,但它的实用性和易于理解的特点使得其成为工程实践者的重要参考书籍。 另外,作者在版权部分明确指出,未经事先书面许可,任何部分均不得复制、存储于检索系统,或以任何形式或任何手段传输。这一声明强调了对作者知识产权的尊重,并要求使用本书内容时需遵守相关法律规定。 《Kalman Filter from the Ground Up》是一本适合对卡尔曼滤波感兴趣的读者从基础到进阶知识进行全面学习的资源。无论是学生、工程师还是研究人员,都可以通过这本书深入学习并掌握卡尔曼滤波的核心理论与应用技巧。
2025-04-11 19:58:23 10.43MB Kalman Filter Extended Kalman
1
神经网络是机器学习领域中一种模仿人脑神经元网络结构和功能的计算模型,它是深度学习的核心基础。神经网络通过大量简单计算单元的相互连接与合作,能够自动学习数据中的特征和模式,广泛应用于图像识别、语音识别、自然语言处理等领域。 PPT模版是针对幻灯片演示软件PowerPoint设计的一套模板系统,它可以有效地帮助用户快速制作出具有专业外观的演示文稿。而神经网络画图PPT模版则是一种专门针对神经网络相关主题的演示文稿模板,它通常包含一系列预先设计好的幻灯片,这些幻灯片展示了神经网络中的各种结构和概念,比如前向传播、反向传播、损失函数等。 根据提供的文件信息,该PPT模版含有超过一百页,覆盖了包括但不限于Softmax、卷积(Convolve)、线性加和归一化(LinearAdd & Norm)、前馈(FeedForward)、多头注意力机制(Multi-Head Attention)等神经网络的关键组成部分。这样的模版能够帮助写论文或者进行学术报告时,通过复用这些结构,直观地展示神经网络的工作原理和细节。 该模版也包括了位置编码(Positional Encoding)、输入输出嵌入(Input Output Embedding)等,这些是实现基于注意力机制的序列处理模型,如Transformer架构时的重要组成部分。Transformer模型摒弃了传统的递归神经网络(RNN)结构,通过自注意力(Self-Attention)机制处理序列数据,已被广泛应用于自然语言处理等任务,并取得了显著的成效。 除此之外,模版还涉及到了输入层、隐藏层和输出层等基本概念,以及卷积操作(CONV operation)、修正线性单元(ReLU)等基础的神经网络操作。输入层负责接收输入数据,隐藏层处理数据并提取特征,输出层提供最终结果。而卷积操作能有效提取图像等多维数据的特征,ReLU则作为激活函数,引入非线性因素,使得网络能够学习和执行更复杂的任务。 模版还特别提到了Tokenize,这是将文本数据转换为模型能够处理的数值型表示的过程,是自然语言处理领域不可或缺的步骤。 神经网络画图PPT模版为用户提供了展示和讲解神经网络结构与工作原理的直观工具,极大地便利了学术研究者和教育者在演示、教学和论文撰写中的需求。
2025-04-11 16:09:29 28.87MB 神经网络 机器学习 PPT
1
包含各种路面异物、垃圾以及多种路面状态
2025-04-11 13:55:50 552.5MB 数据集 机器学习
1
包含各种路面异物、垃圾以及多种路面状态
2025-04-11 13:44:25 999MB 数据集 机器学习
1