通过视觉惯性数据融合进行室内导航 这是以下论文的代码: Farnoosh,A.,Nabian,M.,Closas,P.,&Ostadabbas,S.(2018年4月)。 通过视觉惯性数据融合进行第一人称室内导航。 在位置,位置和导航专题讨论会(PLANS)中,2018 IEEE / ION(pp.1213-1222)。 IEEE。 联系人 , 内容 1.要求 这段代码是用MATLAB R2016b编写的 2.用于收集视频-IMU的iPhone应用程序 联系 ,请求访问我们的iPhone应用程序以收集频率可调的同步视频和IMU数据 2.样本视频 本文中用于实验的走廊的原始视频以及通过我们的iPhone App收集的IMU测量值都包含在./sample_video/目录中。 3.走廊视频的运行代码 运行demo_vpdetect_modular.m 此代码包含以下部分: 阅读整个视频
2023-04-06 21:20:40 8.75MB MATLAB
1
白光发光二极管(LED)的窄调制带宽限制了可见光通信(VLC)的系统容量。非正交多址接入(NOMA)技术通过功率复用可提高系统通信容量。结合直流偏置光正交频分复用(DCO-OFDM)和NOMA技术, 设计了NOMA-DCO-OFDM系统。基于递归法给出了单个LED时VLC多径信道建模方法。在考虑限幅噪声影响时, 推导了用户的信干噪比。采用分数阶功率分配、增益比功率分配和静态功率分配方法, 研究系统平均和速率随LED半功率角、光电检测器的视场角(FOV)和功率分配因子的变化规律。仿真结果表明, 系统平均和速率随着半功率角、FOV和功率分配因子的变化而变化, 可以通过优化半功率角、FOV和功率分配因子达到系统平均和速率最大化。
2023-04-06 15:06:35 7.94MB 光通信 可见光通 非正交多 直流偏置
1
室内环境健康监测机器人功能概述: 家庭生态环境健康管理机器人需要完成空气质量、环境噪音、可见光污染、进水污染监测,融合机器人本身、远程无线节点、智能家电等各路传感器检测的环境状态数据,推理出环境状态调节方案,如果需要调节环境,则机器人通过物联网输出控制指令,控制相应的室内环境调节家电设备工作,例如照明系统、空调系统、加湿机、空气净化器、智能窗帘系统及音响系统,以满足人们健康生活的需要。 家庭生态环境健康管理机器人逻辑框图: 家庭生态环境健康管理机器人采用四轮驱动的智能车结构设计,在一个长圆形的智能车底盘上,依次安装相同规格的三层PVC板,用于安装机器人所需的各种电路模块。 实物作品图:
2023-03-21 09:05:02 13.36MB 机器人 源码 电路方案
1
语义分割 用SegNet进行室内语义分割。 依赖 数据集 按照 下载 SUN RGB-D 数据集,放在 data 目录内。 $ wget http://3dvision.princeton.edu/projects/2015/SUNrgbd/data/SUNRGBD.zip $ wget http://3dvision.princeton.edu/projects/2015/SUNrgbd/data/SUNRGBDtoolbox.zip 架构 ImageNet 预训练模型 下载 放在 models 目录内。 用法 数据预处理 该数据集包含SUNRGBD V1的10335个RGBD图像,执行下述命令提取训练图像: $ python pre-process.py 像素分布: 数据集增强 图片 分割 图片 分割 训练 $ python train.py 如果想可视化训练过程,可执行: $ t
2023-03-18 08:26:30 11.86MB Python
1
基于接收信号强度的KNN室内定位算法,还有测试数据。适合初学者参考
2023-03-15 21:08:15 12KB knn定位 knn,定位算法 knn 定位
第4章行人步频探测和步长估计 第4章行人步频探测和步长估计 在行人航迹推算PDR算法中,步行速度和距离的确定,不再使用惯性导航 对加速度积分的方法,而是利用步态信号的周期性和信号统计特征与行走速度相 关的规律,采用步频探测和步长估计的方法。本章将回顾目前存在的步行速度和 距离估计算法,介绍基于多传感器平台MSP加速度计的步频探测算法和步长模 型,详细说明引入肌电信号EMG进行步频探测和步长估计的方法,并通过大量 的实验论证各种算法和模型的有效性。 4.1 传统步频探测算法和步长估计模型 如第二章介绍,在个人导航中,当GPS接收机无法正常工作时,使用自包 含传感器来辅助导航定位任务。传统惯性积分机制因为低成本加速度计的误差太 大而不可用,必须考虑其它替代方法。于是有学者根据行人步态的运动生理学特 性,提出了通过步频探测和步长估计间接地确定步行速度和距离的方法,从而避 免了积分机制对初始对准过程的苛刻要求和误差随时间累积的弊端。 然而,尽管加速度信号波形随着个人行走呈现出周期性的特征,加速度计放 置在人身上不同部位其波形和周期明显不同,如上半身的加速度波形没有stance 阶段,下半身的加速度信号具有双峰等。首先明确复步和单步的定义。复步 (Stride),又叫跨步,其步长指从一只脚脚后跟着地到相同脚再次着地的距离。 单步(Step),其步长指一只脚着地到另一只脚着地之间的距离。1个复步等同于 1个完整步态(Gait Cycle),等于2个单步(Chai,2004)。当加速度计放置在人 上半身时,其测量的信号表现出与单步对应的波形,而放置在下半身时,其测量 的信号波形随该条腿对应复步变化,可参考图2.7。 由于加速度计测量的信号包含地球重力分量,受到仪器测量噪声和行走时身 体抖动的影响,开始步频探测前,一个必要步骤为信号预处理,剔除重力分量, 消除噪声,使加速度波形特征变得更清晰,如一个跨步对应信号经过降噪后从多 峰变为单峰。常用的预处理方法有:多点平滑(Fang et al,2005),低通滤波(Jee et al,1999:Mezentsev,2005b),差分处理(Weimann et al,2007),小波去噪 (Ladetto,2000)等。 针对人身体不同部位加速度波形不同的特点,目前存在大量步频探测方法, 但是部分步频探测算法应用于具体某一类波形。目前常用的步频探测算法有: 峰值探测法(Peak Detection):针对人体行走时上半身加速度信号每步呈现 39
2023-03-10 11:16:13 5.29MB 传感器辅助 室内定位 PDR算法
1
附件是室内定位技术源码,安卓平台下的iBeacon源代码
2023-03-06 17:28:59 216KB andriod 安卓 iBeacon 室内定位
1
针对传统WLAN指纹定位算法中存在的定位精度低、稳定性差、实时性不高等问题,提出一种基于CMAES-SVR的WLAN室内定位算法。该算法首先对接入点(AP)的接收信号强度(RSS)进行统计分析,采用高斯滤波对信号进行预处理,然后利用K-means聚类算法将原始指纹数据库中的定位区域进行聚类分块;其次采用协方差矩阵自适应进化策略(CMAES)优化支持向量回归机(SVR)参数,从而建立CMAES-SVR室内定位学习模型,通过该模型分别构建各定位子区域中RSS信号与物理位置非线性映射关系;最后判断测试点所属类簇,根据该类簇中训练好的CMAES-SVR模型进行回归预测。实验结果表明,与WKNN、传统SVR以及PSO-SVR算法相比,该算法在定位精度、稳定性以及实时性方面均有所提高。
2023-03-02 11:26:02 1.18MB 室内定位 位置指纹 聚类分析
1
移动通信网络规模不断扩大,室内网络也随之不断优化,现状而言,城市中室外的网络覆盖基本上做到了无缝连接,并且其语音质量也是处在不断完善和提高的状态之中,然而,室内移动通信网络的优化仍存在一定的提升空间,当前,对移动通信网络进行室内优化的课题已然受到很大关注,对其进行实时分析成为网络优化工作的重要内容。
2023-02-28 22:29:42 794KB 工程技术 论文
1
针对RSS(接收信号强度)时变性以及不同终端信号接收能力的差异性,导致WLAN位置指纹定位不稳定的问题,基于RSS空间线性相关性提出一种新颖的位置指纹定位算法。在每个参考点分别采集多组RSS样本形成特征矩阵,并构建离线位置指纹数据库。定位时,通过计算实时RSS矩阵与指纹库参考点相关性,得到最相关的k个参考点,利用二次加权质心算法计算用户的最终位置。为了有效降低信号时变性的影响,采样时进行了滤波、排序等处理,构建离线指纹数据库时尽量增加采样次数,但需要对样本进行聚合处理以适应定位相关性计算。实验结果表明,该算法在保证较高定位准确度的同时,针对不同终端有更好的定位稳定性。
1