内容概要:本文介绍了使用ComSol软件进行地下水模拟的方法,特别是将达西定律与偏微分方程(PDE)结合,用于描述孔隙率非均质状态下的水行为。文中详细探讨了两种孔隙率分布模型——随机分布和韦伯分布的生成方法及其特点,并提供了相应的Python代码示例。此外,还分享了模型的构建步骤、后处理技巧以及一些实用的小贴士,如如何设置边界条件、优化求解器配置等。 适合人群:从事地下水模拟、环境科学、地质工程等领域研究的专业人士和技术爱好者。 使用场景及目标:①学习并掌握ComSol软件中达西定律与PDE方程的应用;②理解随机分布和韦伯分布在地下水模拟中的表现差异;③提升数据处理和可视化能力,更好地展示模拟结果。 其他说明:附带的视频教程和代码文档有助于加深对模型的理解和实际操作。
2025-08-19 10:44:07 334KB
1
ANSYS APDL:变截面连续梁桥Shell63板单元建模方法及静动力特性分析命令详解,基于ANSYS APDL的变截面连续梁桥模型快速建模与多维度分析方法:以板单元Shell63建模及静动力特性探究,ansys apdl连续梁桥模型,采用板单元shell63建模,命令中含变截面连续梁快速建模方法,静力分析,动力特性分析。 ,ansys;apdl;连续梁桥模型;板单元shell63建模;变截面连续梁快速建模;静力分析;动力特性分析,ANSYS APDL快速建模连续梁桥,Shell63板单元静动力分析
2025-08-14 15:24:34 1.79MB
1
ANSYS命令源代码(APDL): 1.beam3、beam4以及beam188单元的无桥墩模型(可分析受力形变和自振频率等动力特征); 2.beam188带桥墩的模型(包括耦合连接和弹簧单元连接)(可分析受力形变和自振频率等动力特征); 在结构工程与计算机辅助设计领域,ANSYS是一款广泛应用于有限元分析(FEA)的软件工具,而APDL(ANSYS Parametric Design Language)是其参数化设计语言,用于构建和分析复杂的工程模型。本文介绍的ANSYS命令(APDL)源代码专注于桥梁结构的分析,特别是简支梁桥梁模型的建立,以及通过beam4和beam188单元模拟梁的受力形变与自振频率,还包括耦合与弹簧连接方式来模拟梁墩的相互作用。 简支梁桥梁是桥梁工程中的一种基本类型,其特点是两端支撑,跨中无支撑。在实际工程应用中,为了研究桥梁的结构性能,工程师需要借助专业软件如ANSYS进行模拟分析。使用beam3、beam4、beam188单元是因为它们在模拟梁结构时,具有不同的精度和适用性。beam3是最早的三维线性梁单元,beam4为三维非线性梁单元,而beam188是ANSYS中较为先进的三维线性梁单元,具有较高精度和更丰富的材料模型。 在此背景下,源代码首先构建了一个不包含桥墩的梁模型,通过定义适当的边界条件,可以模拟简支梁在荷载作用下的形变状态,并通过特征值分析获得自振频率,从而了解其动力响应特性。自振频率是评估结构动态响应的重要参数,它反映了结构在无外力作用下自然振动的频率特性,对于桥梁等重要结构而言,了解自振频率对于评估其抗震性能和避免共振非常重要。 接着,源代码进一步引入了桥墩模型,桥墩在实际桥梁结构中起到传递荷载和支撑桥梁的作用。在这个部分,ANSYS APDL通过耦合连接和弹簧单元模拟了梁与桥墩的连接方式。耦合连接可以模拟梁与桥墩之间的刚性连接,确保它们在结构分析中共同变形。而弹簧单元则用于模拟实际桥梁结构中存在的弹性连接,比如桥墩与地基之间的接触,以及可能存在的轴承、支座等结构元素。 在耦合与弹簧连接模型中,同样可以进行形变分析和自振频率计算,以评估在不同连接条件下桥梁结构的性能。弹簧单元为研究桥梁动力学提供了更多的灵活性,尤其是在模拟结构中柔性连接的动态特性时。 源代码中的分析不仅局限于单一的静力学分析,还扩展到动力学分析,这对于理解桥梁在车辆运动、风荷载等动力因素作用下的响应具有重要意义。在实际工程中,这类分析有助于优化桥梁设计,提高结构安全性。 本文所涉及的ANSYS APDL源代码,通过对简支梁桥梁的建模与分析,不仅展示了beam4和beam188单元在模拟结构形变与动力特性方面的应用,还通过耦合连接和弹簧单元的使用,深入探讨了梁墩连接对桥梁结构性能的影响。这些分析方法和过程对于桥梁工程师进行结构设计和评估具有重要的实践意义。
2025-08-14 15:22:10 15KB ANSYS APDL
1
flowable-6.7.2.zip 是 Flowable 工作引擎的一个版本发布包。Flowable 是一个轻量级的业务程管理(BPM)和工作(Workflow)引擎,用于在应用程序中实现程自动化。 以下是 flowable-6.7.2.zip 的使用场景和说明: 使用场景: 1、程自动化 2、嵌入到 Spring Boot 应用中 3、可视化程设计器 4、任务管理 5、程监控与管理 ps: 使用 flowable-modeler 模块提供的 Web 界面设计程模型,导出为 .bpmn 文件后部署到程引擎中, 画程ui部署方法: 1、解压 flowable-6.7.2.zip,获取 wars 下的各个模块。 2、将 WAR 文件复制到 Tomcat 的 webapps 目录。 3、启动 Tomcat 自动部署。 4、如需持久化数据,修改配置文件连接数据库。 5、初始化数据库表结构(可选)。 6、访问相应 URL 登录 UI 页面。 如需进一步集成到 Spring Boot 项目中,请参考 Flowable 的 Spring Boot Starter 文档。
2025-08-13 01:13:30 209.71MB
1
:“live555 推源码” 【正文】 Live555是一个开源的多媒体框架,广泛用于实时音视频传输。它支持多种网络协议,包括RTSP(Real-Time Streaming Protocol)、RTP(Real-time Transport Protocol)和RTCP(Real-time Transport Control Protocol),这些都是媒体传输的关键协议。在本文中,我们将深入探讨如何利用Live555作为推源码进行实时媒体传输。 1. **RTSP介绍**:RTSP是一种应用层协议,用于控制媒体服务器上的媒体播放。它允许客户端(如播放器)请求、暂停、快进或快退媒体内容,就像操作VCR一样。Live555提供了实现RTSP客户端和服务器端的库。 2. **RTP与RTCP**:RTP是传输层协议,负责承载媒体数据,如音频和视频。RTCP则用于监控传输质量,提供统计信息和控制信息,帮助确保数据的准确传输。 3. **Live555的推过程**:在使用Live555进行推时,首先需要创建一个RTSP服务器,然后将本地的音视频数据打包成RTP包,通过RTSP协议推送到服务器。服务器接收到这些数据后,可以将其分发给多个远程客户端。 4. **推源码分析**:Live555提供的源码包含了各种示例程序,如“SimpleRTSPServer”和“testProgs”。这些示例展示了如何创建RTSP服务器,处理RTP和RTCP包,以及如何将本地媒体数据编码并发送到服务器。 5. **编码与解码**:在推过程中,原始的音视频数据需要经过编码转换为适合网络传输的格式,如H.264视频编码和AAC音频编码。Live555本身并不包含编码器,但可以与其他编码库(如FFmpeg)结合使用。 6. **自定义推**:开发人员可以根据需求自定义推逻辑,例如添加加密、鉴权机制,或者实现特定的编码和解码策略。Live555的模块化设计使得这样的扩展变得容易。 7. **跨平台支持**:Live555支持多种操作系统,包括Windows、Linux、Mac OS X等,这使得它成为跨平台媒体应用的理想选择。 8. **调试与优化**:在实际应用中,可能需要对推源码进行调试和性能优化。Live555提供了丰富的日志功能,帮助开发者追踪问题,优化传输效率。 9. **安全考虑**:在使用Live555推时,应确保数据传输的安全性,可以考虑使用SSL/TLS进行加密,防止中间人攻击。 10. **实时性与稳定性**:保持媒体的实时性和稳定性是关键。Live555通过有效管理网络资源和错误恢复机制,尽量减少延迟并提高媒体服务的可靠性。 总结来说,Live555推源码是实现高效、稳定、跨平台的实时媒体服务的重要工具。通过理解和利用其核心功能,开发者能够构建自己的定制化媒体解决方案,满足各种复杂的业务需求。
2025-08-12 14:33:54 10KB
1
天然气水合物是一种富含甲烷的固态化合物,广泛存在于深海沉积物及陆地永久冻土区的高压低温环境中。由于其储量巨大、分布广泛,被认为是21世纪最具潜力的清洁能源之一。在天然气水合物的开发过程中,降压开采是一种常用的方法,它依赖于降低水合物储层的压力,使其稳定条件被打破,从而释放其中的甲烷气体。 COMSOL是一种先进的多物理场仿真软件,它能够模拟包括热传递、动、结构应力等多方面的物理现象。在天然气水合物的降压开采研究中,可以利用COMSOL软件建立热--固多场耦合模型,实时跟踪水合物分解、甲烷释放、储层孔隙度和渗透率变化等过程,从而对开采效率和安全性做出科学评估。 在模拟过程中,储层孔隙度和渗透率的演化是评价开采效果的重要指标。孔隙度代表了岩石中孔隙的体积占岩石总体积的比例,渗透率则反映了体在储层中动的能力。在开采初期,储层的孔隙度和渗透率较低,但随着水合物的分解和甲烷气体的释放,孔隙度会逐渐增大,渗透率也会得到提升,从而提高开采效率。 水平井筒环空高压充填石英砂层是一种提高开采效率的技术。在该技术中,通过在水平井筒和储层之间充填石英砂等支撑材料,可以保持储层结构的稳定,防止井筒的坍塌,并提高体的渗透能力。压裂水平井模型则是在水平井的基础上进行水力压裂,人为地创造出更多的裂缝,以增加储层与井筒间的接触面积,进一步提高天然气的采收率。 在天然气水合物的开采技术分析中,多场耦合是核心概念,涉及热传递、体动力学和固体应力应变等多个物理场的相互作用。这些耦合效应对于正确描述和预测水合物储层的动态响应至关重要。尤其是在开采过程中,储层的温度、压力和机械强度都会发生显著变化,这些变化通过多场耦合模型能够得到更加准确的反映。 为了确保天然气水合物的高效与安全开采,研究者需要对开采过程中可能出现的环境影响、技术难点等问题进行全面的考量。例如,开采可能引起的海底滑坡、甲烷逃逸对气候变化的影响等,都是需要重点研究的方向。同时,技术上的突破,如改进的热管理方法、新型压裂技术等,也将为未来的商业化开采提供支持。 天然气水合物的降压开采研究是一个复杂而多维的过程,涉及到多场耦合分析、储层孔隙度和渗透率的演化评估以及开采技术的优化。利用COMSOL等仿真工具,结合实际地质数据,可以为这一领域的深入研究和技术开发提供科学的依据和指导。
2025-08-12 12:46:44 120KB
1
基于Matlab的考虑温度与表面粗糙度的三维直齿轮弹润滑计算程序,接触润滑Matlab程序实现温度与粗糙度控制,考虑温度与表面粗糙度的线接触弹润滑matlab计算程序 考虑到三维粗糙接触表面,可求解得到油膜温升,油膜压力与油膜厚度 可应用到齿轮上,此链接为直齿轮润滑特性求解 ,温度; 表面粗糙度; 弹润滑; MATLAB计算程序; 三维粗糙接触表面; 油膜温升; 油膜压力; 油膜厚度; 直齿轮润滑特性。,直齿轮润滑特性求解:三维粗糙表面弹润滑计算程序 在现代机械设计和维护中,对直齿轮润滑特性的深入研究是提高齿轮使用寿命和效率的关键技术之一。随着计算机技术的发展,Matlab作为一款强大的数值计算和仿真工具,在工程领域中被广泛应用于各种科学计算和模拟。基于Matlab的三维直齿轮弹润滑计算程序,将温度和表面粗糙度这两个重要的物理因素纳入考虑,为工程技术人员提供了更为精确的直齿轮润滑特性分析。 直齿轮在运行过程中,由于摩擦产生的热量会导致润滑油的温度变化,进而影响油膜的物理特性,如粘度和压力分布,最终影响油膜的形成和润滑效果。另一方面,齿轮的表面粗糙度直接影响齿轮间的接触特性,包括接触应力分布和摩擦系数,进而影响润滑状态。因此,考虑温度和表面粗糙度对于准确模拟直齿轮的弹润滑特性至关重要。 本计算程序利用Matlab的高效数值计算能力,结合弹润滑理论,通过编程实现了对三维粗糙表面接触问题的求解。程序能够计算并输出油膜的温度升高、油膜压力分布以及油膜厚度等关键参数,从而帮助设计人员优化齿轮的润滑条件,减小磨损,延长齿轮寿命。 具体来说,该计算程序首先需要构建一个包含温度和表面粗糙度影响的数学模型,该模型能够准确反映直齿轮接触表面的物理特性和润滑状态。然后,程序利用Matlab的数值分析和求解功能,对模型进行计算,得到油膜温升、油膜压力和油膜厚度等参数的分布情况。这些参数是评估直齿轮润滑性能的重要指标。 本程序的应用场景广泛,不仅适用于工业齿轮的润滑设计和故障分析,还可以用于齿轮传动系统的性能优化。通过精确计算和分析,能够为齿轮传动系统的可靠性提供理论支撑,减少因润滑不良导致的故障和停机时间,提高生产效率。 在实际应用中,本计算程序可以作为一个重要的工具,帮助工程师快速评估和优化直齿轮的设计。通过对温度和表面粗糙度的控制,可以有效地调整润滑状态,确保齿轮系统在最佳的润滑条件下工作,从而提高系统的整体性能和耐久性。同时,该程序也可以作为教学和研究工具,用于进一步研究和探讨润滑理论在齿轮传动系统中的应用。 基于Matlab的考虑温度与表面粗糙度的三维直齿轮弹润滑计算程序,为直齿轮润滑特性分析提供了科学、高效的方法。通过精确模拟和计算,可以有效预测和改善直齿轮的润滑状态,对于机械设计和维护具有重要的现实意义。
2025-08-11 10:20:56 2.17MB xhtml
1
使用一年半,修改了使用过程中不符合用户使用的BUG。目前系统已经很稳定,很适用了。 主要需求: 1.将水账般的记录按工作任务进行归类排序; 2.提供按照时间段和关键字进行任意搜索。 关键技术: 1.本系统采用EXCEL作为展现前端(VBA开发),SQL视图作为中间业务处理层(筛选、分组、排序),ACCESS数据库作为后台,仿照BI(BUSINESS INTELLIGENCE)商务智能的数据挖掘和数据钻取原理进行开发。 2.报表展现和录入、修改和删除集成在同一页面中。该统前端EXCEL不仅展现报表数据,同时允许记录的新增、修改、删除。 3.报表多维查询和钻取功能。支持数据按照“任务-任务进度”的粒度进行钻取,允许按照“关键字”和“时间段”两个维度进行查询。
1
内容概要:本文详细探讨了利用 FLOW 3D 对同轴送粉激光沉积进行熔池场与温度场的数值模拟研究。文中介绍了如何设置材料属性(如密度、导热系数、表面张力系数等),并讨论了不同参数(如激光功率、扫描速率、送粉量)对熔池行为的影响。同时,文章还涉及了多轴送粉的坐标系变换、重力加速度的分解以及表面张力模型的应用。此外,作者分享了一些实际应用中的经验教训,如时间步长的选择、应力释放模块的引入以及针对特定材料(如钛合金)的特殊处理方法。 适用人群:从事增材制造领域的研究人员和技术人员,特别是那些关注熔池场与温度场仿真的专业人士。 使用场景及目标:适用于希望深入了解同轴送粉激光沉积过程中熔池行为的研究人员和技术人员。目标是通过数值模拟提高增材制造工艺的精度和效率,降低试错成本。 其他说明:文章不仅提供了理论指导,还结合了实际案例,展示了如何解决仿真过程中遇到的具体问题。这对于实际生产中的参数调整和优化具有重要参考价值。
2025-08-10 16:48:58 324KB
1