本篇文档描述了一个关于高铁受电弓检测的数据集,该数据集采用了Pascal VOC格式和YOLO格式,共包含了1245张标注图片。数据集被划分为两个类别,分别是“roi”(Region of Interest,感兴趣区域)和“sdg”(可能为某种特定标识或部件名称)。每个类别的标注框数相同,均为1245个,使得总的标注框数达到2490个。标注文件采用XML格式,与Pascal VOC格式相匹配;同时,每个图片还对应一个YOLO格式的TXT文件,其中包含了用于训练YOLO(You Only Look Once)目标检测模型的标注信息。 数据集中的图片均以.jpg格式存储,标注信息包含在同名的XML文件中,这些XML文件详细记录了每个目标的位置信息以及对应的类别标签。YOLO格式的TXT文件则包含了简化的目标位置信息,格式适合YOLO模型的训练需求。数据集的标注工作是通过labelImg工具完成的,该工具是一款流行的图像标注软件,通常用于机器学习和计算机视觉领域中的目标检测任务。 文档还特别提到,标注工作是通过在目标周围绘制矩形框来实现的。标注的精确度与合理性得到了保证,但文档明确指出不对使用该数据集训练得到的模型或权重文件的精度进行任何保证。数据集的提供者仅确保了标注的准确性和合理性,不承担因使用数据集而产生的任何技术或商业风险。 需要注意的是,文档中没有提及具体的数据集使用示例,可能需要使用者自行探索或查找相关的标注规则以理解数据集的具体使用方法。而“sdg”这一类别名称未给出具体含义,可能是特定行业术语或数据集作者自定义的类别标签,使用时需要参考相关领域的专业知识或联系数据集作者以获取更详细的信息。 这是一个针对高铁受电弓领域特定目标检测任务的专业数据集,适合于使用YOLO等目标检测框架进行模型训练和算法验证的用户。数据集的格式与标注工具的标准化保证了其在计算机视觉领域中的广泛适用性。
2025-09-08 15:37:44 1.26MB 数据集
1
样本图:blog.csdn.net/2403_88102872/article/details/144255417 文件放服务器下载,请务必到电脑端资源详情查看然后下载 重要说明:数据集部分有增强,占比大约是1/3 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):5040 标注数量(xml文件个数):5040 标注数量(txt文件个数):5040 标注类别数:6 标注类别名称:["Prosthesis","Root Canal","caries","impaction","restoration","root stump"] 每个类别标注的框数: Prosthesis 框数 = 4770 Root Canal 框数 = 5759 caries 框数 = 5242 impaction 框数 = 5225 restoration 框数 = 5348 root stump 框数 = 2052 总框数:28396 使用标注工具:labelImg
2025-09-08 15:29:04 407B 数据集
1
红外海洋船只检测数据集是一项用于目标检测的重要资源,专门针对海洋环境中的船只识别问题。该数据集按照Pascal VOC格式和YOLO格式提供,共计包含8402张红外图像和相应的标注文件,其中包括用于机器学习和深度学习模型训练的xml标注文件和txt标注文件。数据集覆盖了七种不同的船只类别,分别是“bulk carrier”(散货船)、“canoe”(独木舟)、“container ship”(集装箱船)、“fishing boat”(渔船)、“liner”(班轮)、“sailboat”(帆船)和“warship”(战舰)。每张图片的标注中均明确指出船舶的类型及位置信息,通过边界框的方式标注出图像中船只的具体位置。 具体到每个类别的标注框数,数据集详细列出了每种类型船只的标注框数,例如散货船有1940个标注框,独木舟有4935个标注框等,这有助于研究者和开发者针对不同类别的检测精度进行优化。整个数据集的总标注框数达到26445,这为训练和测试目标检测模型提供了丰富的样本。 为了制作这些数据集,使用了标注工具labelImg进行图像的标注工作。labelImg是广泛应用于目标检测领域的标注工具,它能够帮助标注人员在图像中标出目标对象的位置,并生成对应的标注文件。这些标注文件是机器学习模型训练的重要依据,能够帮助模型学习到如何在现实世界中准确识别不同类型的船只。 使用该数据集,研究人员可以在深度学习框架中应用各种目标检测算法,如YOLO(You Only Look Once)、Faster R-CNN、SSD(Single Shot MultiBox Detector)等,来训练和评估模型在红外环境下检测和分类不同船只的能力。红外图像因其对环境光的特殊适应性,在全天候的海上监测任务中具有重要应用价值。 该数据集的发布对于推动自动化、智能化海上监控系统的发展具有重要作用。通过深度学习和目标检测技术的进步,未来可以实现更为精确的海上交通监控、港口管理、非法捕鱼监测和海上搜救等应用。此外,数据集也为学术界提供了一个新的研究平台,以测试和改进现有算法,并催生更多创新的算法和应用方案。 该数据集的发布,也体现了当前人工智能在特定行业应用中的不断深化。随着技术的发展和数据量的积累,机器学习模型的性能将不断提升,有望为海上安全和管理提供更加强大的技术支持。同时,随着相关技术的成熟和普及,我们可以预见在不久的将来,类似的应用会延伸到其他领域,如空中交通监管、野生动物保护等,从而为人类社会带来更多的便利和安全。
2025-09-06 21:45:20 1.94MB 数据集
1
样本图:blog.csdn.net/2403_88102872/article/details/144143403 文件太大放服务器下载,请务必到电脑端资源详情查看然后下载 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):1529 标注数量(xml文件个数):1529 标注数量(txt文件个数):1529 标注类别数:3 标注类别名称:["lie","sit","stand"] 每个类别标注的框数: lie 框数 = 503 sit 框数 = 455 stand 框数 = 1270 总框数:2228 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注
2025-09-05 14:12:00 407B 数据集
1
光伏板是太阳能发电系统中最重要的组成部分,它将太阳的光能转换成电能。然而,光伏板表面的鸟粪等杂物会显著影响其转换效率。因此,通过机器视觉技术识别并处理这些缺陷成为提高光伏系统效率的重要手段之一。 本数据集名为“光伏板鸟粪缺陷检测数据集VOC+YOLO格式1154张1类别”,专门为机器学习任务提供训练和测试所需的数据。该数据集共有1154张标记过的图片,全部按照Pascal VOC格式和YOLO格式进行了标注,适用于训练目标检测模型。 Pascal VOC格式是一种广泛使用的图像标注格式,它包含了一系列的xml文件,每个xml文件对应一张图片,标记了图片中的目标物体。xml文件中包含了关于目标物体的多种信息,如位置、尺寸、类别等。YOLO格式是一种更为简洁的目标检测格式,它使用txt文件直接以特定格式记录物体的类别与位置信息。 在本数据集中,图片数量与标注数量相等,均为1154张,且仅有一个类别:“dropping”(鸟粪),共标注了5376个框。这些框通过矩形边框来标注光伏板表面的鸟粪区域。标注工作由专业工具labelImg完成,保证了标注的准确性和一致性。 由于光伏板上缺陷的种类可能较为单一,标注类别数为1,有助于训练更专注的检测模型。这样的数据集尤其适合那些需要快速部署和调整的场景,比如无人机搭载的光伏板巡检系统,能够快速识别出光伏板上的异常情况。 需要注意的是,本数据集仅提供准确合理的标注图片,不对训练模型的性能或精度提供任何保证。使用者在使用该数据集时应谨慎,可能需要根据实际情况对数据集进行进一步的扩充或调整。 数据集的获取地址已经提供,下载后可以按照需要进行使用。对于研究者和开发者来说,这是一个宝贵的资源,可以用于研究和开发新的图像处理算法,特别是在光伏行业的应用中。 该数据集通过大量的样本和统一的标注格式,为光伏板表面缺陷检测领域提供了一个良好的起点。开发者和研究者可以在此基础上继续优化和开发更加准确高效的检测算法,以提升光伏系统的整体性能和运行效率。
2025-09-01 11:37:53 3.68MB 数据集
1
睡岗检测是一项通过计算机视觉技术进行的监控任务,目的是识别工作或驾驶场合中因疲劳而睡着的人员。睡岗检测数据集VOC+YOLO格式共有1198张图像,这些图像均属于同一个类别,即“sleep”。该数据集适用于需要对人类睡岗行为进行识别和警示的场合。 数据集采用的是Pascal VOC格式和YOLO格式两种标注方式。Pascal VOC格式是一种广泛使用的标注格式,包含图像文件、XML文件和标注信息。XML文件详细记录了标注的对象,包括标注的类别和位置信息等。而YOLO格式则通常包含一个文本文件,里面记录了与图像对应的标注信息,主要采用中心点坐标和宽高信息来表示物体的位置和大小。 在数据集中,每张jpg格式的图片都有对应的VOC格式XML文件进行标注,以及YOLO格式的txt文件。这些标注文件记录了所有图片中“sleep”类别的标注情况。数据集中共有1198个标注框,每个框均标记为“sleep”类别,表明每个标注框都表示一个人在睡岗的状态。 制作本数据集使用的标注工具是labelImg,这是一个在计算机视觉领域非常流行的图像标注软件。在标注过程中,遵循特定的规则,即对每一个需要检测的睡岗人员都使用矩形框进行标注。数据集的重要说明部分暂时为空,没有特别的标注规则或者注意事项。本数据集特别指出,不对使用该数据集训练模型的精度作任何保证,但数据集本身提供了准确且合理的标注。 数据集的适用场景包括但不限于工业安全监控、交通运输监测等场合。在这些场合中,通过实时监控和分析视频流,系统能够自动检测出是否有人因疲劳而睡着,从而可以及时发出警告,预防可能的安全事故。 为了更深入地了解数据集的细节,用户可以预览图片,以及查看具体的标注例子。通过预览和例子,研究者和开发者能够获得数据集质量和标注准确性的真实感受,以判断其是否满足项目需求。 在实际应用中,数据集需要配合深度学习框架和模型进行训练。以YOLO(You Only Look Once)为例,这是一种流行的目标检测算法,因其速度快、准确度高而受到青睐。VOC格式则可用于训练如SSD、Faster R-CNN等其他主流目标检测模型。在训练过程中,训练数据集将指导模型学习如何识别图像中的睡岗行为。 总结而言,睡岗检测数据集VOC+YOLO格式提供了1198张经过精准标注的图像资源,可供开发者用于机器学习项目,特别是那些需要在特定环境下检测睡岗行为的应用开发。利用该数据集,可以训练出具有较高准确率的睡岗检测模型,从而提高工作场合的安全性。使用前应自行评估数据集是否满足具体需求,并了解使用该数据集可能存在的风险和责任。
2025-08-30 15:52:40 2.03MB YOLO 图像数据集 格式转换
1
遥感技术在航空领域的应用日益广泛,其中机场跑道作为航空安全的重要组成部分,其状态监测显得尤为重要。为提高遥感监测的自动化和智能化水平,数据集的作用不可或缺。《遥感机场跑道检测数据集VOC+YOLO格式8116张2类别》文档提供了一个专为遥感影像中机场跑道检测设计的数据集。该数据集具有以下几个关键知识点: 该数据集采用Pascal VOC和YOLO两种标注格式。Pascal VOC格式是一种广泛使用的数据格式,它提供了XML格式的标注文件,用于描述图像中各类物体的位置和类别信息。而YOLO格式则是一种流行的实时对象检测系统,它通过txt文件来标注物体的类别和位置,以方便YOLO训练算法的使用。这两种格式的结合使得数据集能够适用于多种对象检测模型的训练和测试。 数据集包含了8116张标注好的遥感图片,每张图片都对应一个VOC格式的xml标注文件和一个YOLO格式的txt标注文件。这意味着,除了图片本身,还有8116个详细的标注文件,为算法的精确训练提供了可能。图片及标注文件的数量之多,保证了数据集在深度学习模型训练中的丰富性和多样性。 标注类别共有两个,分别是“airport”(机场)和“runway”(跑道)。机场类别标注了17251个矩形框,跑道类别标注了27810个矩形框,总计45061个矩形框。这表明数据集在机场和跑道对象的覆盖面上下了大功夫,确保了足够的标注密度和详尽程度。 标注工具使用的是labelImg,这是个广泛用于图像标注的开源工具,它支持生成Pascal VOC格式的标注文件。标注规则是使用矩形框来圈定机场和跑道,这与遥感图像中机场跑道目标的识别特征相匹配。 数据集的使用说明中还强调了重要说明和特别声明。重要说明暂无,而特别声明则指出数据集本身不对训练出来的模型精度提供任何保证。这表明数据集提供的是一个基准材料,模型精度的高低需要使用者根据具体算法和训练过程来保证。同时,数据集提供了准确且合理的标注,以确保训练图像质量。 数据集提供了图片预览和标注例子,以便用户更直观地了解数据集的内容和标注的质量。数据集的下载链接也一并给出,方便用户获取完整数据进行学习和研究。 该数据集对于研究人员来说具有较高的实用价值,能够为机场跑道的遥感监测与分析提供坚实的数据支持。通过对这些标注数据的深度学习和分析,研究人员可以开发出更为精确高效的机场跑道监测算法,从而提高航空安全的保障水平。
1
渣土车检测数据集是专为计算机视觉领域中的对象检测任务设计的,特别是对于希望提升模型在渣土车识别方面的性能的研究者和开发者。数据集采用了两种广泛使用的标注格式:Pascal VOC格式和YOLO格式,这使得数据集可以兼容多种训练框架和模型。 Pascal VOC格式是一种常见的图像数据标注方式,它包含了XML文件,这些文件详细描述了每张图片中包含的对象及其位置。每个XML文件与对应的jpg图片文件相对应,XML文件内含有多个标签,每个标签下又包含等子标签。其中,标签中定义了对象的名称、精确的边界框坐标(xmin, ymin, xmax, ymax)等信息。Pascal VOC格式因其标准性和广泛的支持而被广泛应用。 YOLO(You Only Look Once)格式是一种更为简化的标注格式,主要用于YOLO系列目标检测模型。它通常不涉及XML文件,而是使用文本文件来描述标注信息。每张图片对应一个文本文件,文件中列出了所有在图片中检测到的对象的类别和边界框信息,通常格式为“类别 置信度 x_center y_center width height”。YOLO格式简化了标注过程,加快了训练速度,因此在实时检测领域颇受欢迎。 数据集包含了826张jpg格式的图片以及等量的标注信息。数据集中的每张图片都已被精确地标注了至少一个对象,总共标注了1534个渣土车的边界框。图片和对应的标注文件格式为826对VOC格式的xml文件和YOLO格式的txt文件。尽管数据集仅包含一个类别,即“mucktruck”(渣土车),但该类别的标注框数量多达1534个,提供了丰富的训练样本。 数据集采用labelImg工具进行标注。labelImg是一款流行的图像标注工具,它允许用户通过画矩形框的方式来标注图片中的对象,并生成相应的标注文件。由于标注任务的繁杂性,准确的边界框对于训练一个高性能的检测模型至关重要。正确的边界框不仅要求精确地框定目标对象,还必须覆盖目标对象的全部部分而不包含其他多余的对象或背景。 尽管本数据集提供了大量准确合理的标注图片,但重要的是要指出,数据集的提供方不对由此数据集训练出来的模型或权重文件的精度做任何保证。数据集的使用者需要自行验证模型的性能,并根据具体应用需求调整和优化模型。 数据集的预览和标注例子在描述中未具体提供,但预览图片通常用于让潜在的用户了解数据集中的图片质量和标注的准确性。而标注例子则是展示如何正确地进行标注,为初次使用者提供参考。 数据集的使用者应注意,模型的训练和验证应该在保证数据隐私和遵守相关法律法规的前提下进行。对于涉及实际场景应用的模型,还需要进行现场测试以确保模型的实用性和可靠性。
2025-08-25 11:14:20 3.14MB 数据集
1
用串matlab代码该存储库包含用于攻丝飞行员的 Matlab 代码,包括: 轻拍训练器 主要实验 要求: 确保安装了以下软件并添加到 matlab/octave 路径中。 有关说明,请参阅以下链接: 要求 二手版本 >=3.0.14 >=2016b 或者 5.1 跑步: 重新启动您的计算机,并关闭所有可能消耗资源的应用程序(仅保留 Matlab) * 。 将整个存储库下载为 zip。 解压缩并导航到下载的文件夹。 把鼠标放在一边,确保键盘周围有空间。 确保您处于安静的环境中,并且您戴着耳机。 在 Matlab 中运行 tapTrainer.m 以启动 Tap Trainer psychtoolbox 会话。 在 Matlab 中运行 tapMainExperiment.m 以启动 Main Experiment psychtoolbox 会话。 * 如果您在实验过程中听到音频破裂,您可能正在运行加载处理器的应用程序。 尝试查找并关闭此应用程序。 如果它不起作用,请与我们联系。 Tap Trainer 课程 参与者完成了许多试验。 在每次试验中,都会呈现有节奏的刺激。 刺激可以是无缝循
2025-08-24 17:27:16 190KB 系统开源
1
YOLO(You Only Look Once)是一种广泛应用于目标检测领域的深度学习模型,因其高效和实时性而备受关注。在这个数据集中,我们聚焦于“道路指路牌”和“前方施工标识”两个类别,这对于自动驾驶系统至关重要。自动驾驶车辆需要准确识别这些标志以确保安全行驶。 数据集的构建通常分为三个阶段:数据收集、数据标注和模型训练。在这个案例中,数据收集通过网络爬虫完成,这意味着图片可能来源于多个在线来源,涵盖了各种不同的场景和条件,增加了模型的泛化能力。数据标注则采用labelimg工具,这是一个用于图形界面标注的开源软件,能够方便地将图像中的目标边界框转换为YOLO格式的标注文件。YOLO格式的标注包含每个目标的类标签、中心坐标和宽高,便于模型理解和学习。 训练集包含500张图片,这样的规模足够支持模型初步学习和理解两类目标的特征。验证集则有90张图片,它的作用是评估模型在未见过的数据上的性能,帮助调整超参数并避免过拟合。合理的数据集划分是防止模型在特定数据上表现过好,而在实际应用中效果不佳的关键。 对于自动驾驶系统来说,目标检测是核心能力之一。道路指路牌提供了方向信息,前方施工标识则警示潜在危险。准确检测这些标志对于自动驾驶车辆的路径规划、速度控制以及决策制定至关重要。YOLO模型由于其快速的检测速度和相对较高的精度,成为了这类应用的理想选择。 在训练过程中,可能需要对数据进行预处理,如归一化、增强等,以提高模型的鲁棒性。此外,可能还需要调整YOLO模型的结构,如增加或减少卷积层,改变网络的宽度和深度,或者使用不同的损失函数来优化训练过程。模型训练完成后,会进行验证集上的评估,常见的指标包括平均精度(mAP)、精确率、召回率等。 总结来说,这个数据集提供了一个研究和开发自动驾驶中目标检测技术的良好平台,特别是针对道路标志识别。通过利用YOLO模型和深度学习的力量,我们可以期待更智能、更安全的自动驾驶系统。开发者和研究人员可以在此基础上进一步优化模型,提升目标检测的精度和速度,为未来的智能交通系统奠定坚实的基础。
2025-08-21 15:34:24 112.18MB 数据集 自动驾驶 YOLO 目标检测
1