ADC检测STM32内部的温度传感器,使用UART将结果输出
2025-05-10 10:02:36 24.73MB stm32
1
《基于Verilog-A的SAR ADC及其模数转换与混合信号IC设计教程与实战手册:含现成常用器件代码》,Verilog-A 学习资料 SAR ADC 模数转器 混合信号IC设计 模拟IC设计 包含现成常用的Verilog-A器件代码,可以直接拿来用 Verilog-A 一种使用 Verilog 的语法来描述模拟电路的行为 ,Verilog-A; SAR ADC; 模数转换器; 混合信号IC设计; 模拟IC设计; 器件代码,《Verilog-A教程:SAR ADC与混合信号IC设计模数转换模拟》
2025-05-09 16:20:07 661KB 哈希算法
1
STM32F103C6是意法半导体(STMicroelectronics)生产的基于ARM Cortex-M3内核的微控制器,广泛应用于嵌入式系统设计。Proteus是一款电子设计自动化软件,可以进行虚拟原型设计和仿真,使得在硬件制作之前就能验证程序功能。 在这个项目中,我们关注的是STM32F103C6如何利用定时器触发ADC(模拟数字转换器)采样,再通过DMA(直接存储器访问)将数据传输到MCU的内存,并最终通过串口发送出去。这是一个典型的实时数据采集和通信应用。 1. **定时器触发ADC采样**: - 定时器(Timer)在STM32中常用于生成精确的时间间隔,它可以配置为中断或DMA请求源。在此案例中,定时器被设置为在特定周期后触发ADC转换,确保采样频率的稳定。 - ADC(ADC1、ADC2或ADC3)配置为外部触发模式,选择相应的定时器作为启动信号。当定时器的特定事件发生(如更新事件)时,ADC开始执行一次或连续的转换。 2. **ADC DMA配置**: - DMA(Direct Memory Access)允许数据在没有CPU干预的情况下从外设直接传输到内存或反之。在本项目中,ADC的转换结果通过DMA通道传输到SRAM,减轻了CPU负担,提高了系统效率。 - 需要配置DMA控制器,选择正确的通道、优先级和数据宽度,同时设置ADC的DMA请求源为定时器触发。 3. **串口通信**: - STM32F103C6内置USART(通用同步/异步收发传输器)或UART接口,用于与外部设备进行串行通信。在这个项目中,采样数据被送入内存后,可能通过USART发送到其他设备,如PC或其他微控制器。 - USART需要配置波特率、数据位、停止位、奇偶校验等参数,并开启中断或DMA发送,以便在数据准备好后立即发送。 4. **项目文件解析**: - `adcdma.ioc`:这是Proteus项目的配置文件,包含了电路图的元器件布局和连接关系。 - `.mxproject`:可能是Keil MDK工程文件,包含编译和调试项目所需的配置。 - `adcdma.pdsprj`:可能是另一个版本的项目文件,可能对应不同的IDE或编译器。 - `wx shitoudianzikai.txt`:这看起来是一个文本文件,可能是项目相关的说明或者日志。 - `联系我.url`:一个链接文件,可能指向开发者提供的联系方式。 - `adcdma.pdsprj.wanmeiyingjianp.wanmeiyingjian.workspace`:可能是开发环境的工作区文件,保存了工作空间的设置和布局。 - `Drivers`、`Core`、`MDK-ARM`:这些文件夹可能包含驱动库、核心库以及MDK-ARM编译工具链的文件。 5. **开发流程**: - 在Proteus中搭建STM32F103C6和其他必要的组件,如ADC、串口模块、定时器和可能的虚拟示波器或终端。 - 使用Keil MDK编写C代码,配置定时器、ADC、DMA和串口,并实现相应的功能函数。 - 在Keil MDK中编译代码,生成HEX或BIN文件。 - 将生成的二进制文件烧录到Proteus中的STM32模型,然后启动仿真,观察数据采集和传输是否正常。 这个项目展示了STM32在实时数据采集和通信中的应用,结合了定时器、ADC、DMA和串口通信等多个关键功能,对于学习STM32和嵌入式系统开发具有很高的实践价值。
2025-05-07 16:34:40 21.02MB stm32 proteus
1
ADC12DJ3200 FMC子卡:原理图、PCB设计与JESD204B源码解析及高速ADC应用,ADC12DJ3200 FMC子卡原理图&PCB&代码 FMC采集卡 JESD204B源码 高速ADC 可直接制板 ,ADC12DJ3200; FMC子卡原理图; FMC采集卡; JESD204B源码; 高速ADC; 可直接制板,"ADC12DJ3200高速采集卡原理与实现:FMC子卡PCB设计与JESD204B源码解析" 在现代电子系统设计领域中,高速模数转换器(ADC)扮演着至关重要的角色,尤其是在需要处理大量数据的应用中。ADC12DJ3200 FMC子卡作为一个集成了高速ADC技术的模块,不仅支持高速数据采集,还能够提供高质量的信号转换。本文将详细解析这款子卡的原理图、PCB设计以及其与JESD204B标准的源码实现,并探讨其在高速ADC应用中的具体实现。 原理图是理解任何电子模块功能和构造的关键。ADC12DJ3200 FMC子卡的原理图详细展示了其内部的电路连接和组件布局,是整个模块设计的基础。通过原理图,我们可以了解数据如何在ADC12DJ3200芯片中被采样、转换,并通过FMC(FPGA Mezzanine Card)接口与外部设备连接。 PCB设计则是在原理图的基础上,将电路转化为实际可制造的物理实体。PCB设计涉及到信号的完整性、电源的分配以及热管理等关键因素,这些都直接关系到FMC子卡的性能和可靠性。一个精心设计的PCB可以确保高速信号传输的稳定性和低噪声干扰,这对于高速ADC来说至关重要。 JESD204B是一种高速串行接口标准,用于连接高速ADC和FPGA。该标准通过串行通信来减少所需的I/O引脚数量,并且能够支持更高数据速率。了解JESD204B源码,特别是其在ADC12DJ3200 FMC子卡上的应用,有助于工程师在设计高速数据采集系统时,实现数据的正确传输和处理。 高速ADC的应用广泛,包括但不限于通信基站、雷达系统、医疗成像设备以及测试测量仪器。ADC12DJ3200作为一款具有12位精度和高达3.2 GSPS采样率的ADC,能够处理极为复杂和高速变化的模拟信号。通过FMC子卡,该ADC模块能够轻松集成到各种FPGA平台,从而扩展其应用范围和性能。 此外,子卡的设计和实现还需要考虑到与外部设备的兼容性和接口标准。通过深入分析子卡技术详解,我们可以了解到如何在现代电子通信系统中有效地应用这种高速模数转换器。 现代电子设计不仅仅是硬件的问题,软件和固件的实现同样重要。ADC12DJ3200 FMC子卡的源码,特别是与JESD204B接口相关的部分,是实现高性能数据采集系统的关键。工程师需要对这些源码有深入的理解,才能确保数据的正确采集、传输和处理。 随着科技的飞速发展,电子系统的设计和应用也不断演变。对于ADC12DJ3200 FMC子卡的深入研究和理解,将有助于推动相关技术的进步,并在未来可能出现的新应用中找到合适的位置。
2025-05-04 21:11:35 618KB 哈希算法
1
内容概要:本文详细介绍了Pipelined-SAR ADC的全流程设计,涵盖理论分析、Matlab建模和电路设计三个主要部分。首先,文章阐述了Pipelined-SAR ADC的基本原理及其模块化设计理念,强调了各子模块之间的协同工作对提升转换效率和准确性的重要作用。接着,通过Simulink建立了基础模型,并深入探讨了非理想因素(如噪声、温度漂移)对电路性能的影响。最后,文章详细描述了各个子模块的具体电路设计方法以及整体ADC设计后的性能仿真测试,确保设计的稳定性和可靠性。 适合人群:从事模拟-数字转换器研究与开发的技术人员,尤其是对Pipelined-SAR ADC感兴趣的电子工程师和研究人员。 使用场景及目标:①帮助读者深入了解Pipelined-SAR ADC的工作原理和技术细节;②为实际项目提供理论支持和技术指导,确保设计的高效性和可靠性。 阅读建议:由于涉及到大量的理论分析和具体的设计步骤,建议读者在阅读过程中结合实际案例进行理解和实践,以便更好地掌握相关技术和方法。
2025-05-02 21:03:27 557KB
1
TI SAR ADC模型(Matlab) 包含各类非理想因素,时钟偏差,增益偏差,失调偏差 模型参数均可自由设置 ,TI SAR ADC模型; 非理想因素; 时钟偏差; 增益偏差; 失调偏差; 模型参数可设置,TI SAR ADC模型:含非理想因素与参数可调的Matlab模型 TI SAR ADC(逐次逼近寄存器模数转换器)是一种广泛应用的模数转换技术,因其高速、低功耗和简化的硬件设计而受到青睐。在实际应用中,由于各种非理想因素的影响,使得ADC的实际性能与理论性能存在差异。因此,为了更准确地评估和优化ADC的性能,需要建立一个包含这些非理想因素的模型来进行仿真和分析。 在此次提供的资料中,一个重要的主题是“TI SAR ADC模型(Matlab)”,这表明所讨论的模型是利用Matlab这一强大的数值计算和仿真软件来构建的。Matlab因其强大的数学处理能力和直观的编程环境,非常适合进行复杂系统的建模和仿真。在这个模型中,特别强调了包含非理想因素,包括时钟偏差、增益偏差和失调偏差等。 时钟偏差是指ADC在采样过程中时钟信号的不准确,这会导致采样点与理想的采样时刻产生偏差,影响数据的准确性。增益偏差是指ADC的实际增益与其理想增益之间的差异,这通常是由于电路中的非线性或元件特性不匹配所导致的。失调偏差是指ADC的输出不从零开始或者零点漂移,这会影响ADC的测量精度,特别是在低信号级别下。 模型参数的可自由设置是这个模型的一大特点,这意味着用户可以根据实际的硬件条件和设计需求来调整模型的参数,从而更贴近实际的工作情况。这种灵活性使得研究者和工程师可以更加细致地观察和分析各种非理想因素对ADC性能的影响,进而进行相应的电路设计优化。 在文档标题中,还提到了“模型参数均可自由设置”,这表明用户可以通过改变模型的参数值,来模拟不同的操作条件或探索不同电路设计对ADC性能的影响。这样的设置可以让使用者更全面地了解ADC在各种情况下的行为,并且有助于发现设计中的潜在问题。 提到的文件列表中,文档名称包含了“模型研究及其在中的实现一引言随”、“基于模型的非理想因素分析及其”等关键词,显示了文档的主要内容是关于模型的研究、实现以及基于模型的非理想因素分析等。此外,文件名中出现的“一引言随”、“一”等可能表明文档是系列文章或者是系列研究的一部分,每篇文档可能专注于不同的研究点或是分析的不同阶段。 由于文件列表中还包含“model包含各类非理想因素时钟偏差增益偏差失调偏.html”、“基于模型的理想与.html”等文件,我们可以推断这些文档中包含了对模型详细描述的内容,以及与理想模型之间的对比分析。这些内容对于理解模型的工作原理、非理想因素的具体影响,以及如何在设计中应对这些挑战至关重要。 图片文件“2.jpg”、“4.jpg”、“1.jpg”的存在表明,除了文本和模型仿真之外,这些研究还可能包含了图像资料来直观展示模型的仿真结果或者解释某些概念。 文档提供了一个基于Matlab的TI SAR ADC模型,该模型集成了多种非理想因素,并允许用户自由设置模型参数,以期更准确地模拟和分析ADC的行为和性能。这些文档和模型对于从事ADC设计和分析的专业人士来说,将是宝贵的资源。此外,文档和图片资料的存在,也显示了研究者在报告其研究成果时所采用的多种表达方式,以帮助读者更全面地理解研究内容。
2025-04-24 12:58:39 961KB rpc
1
在本文中,我们将深入探讨如何在STM32L475微控制器上实现串行端口(UART)的DMA(直接存储器访问)接收功能,用于处理不定长度的数据。"RX-DMA.rar"是一个示例项目,其中包含了必要的代码和配置,帮助开发者理解并应用这一技术。 STM32L475是STM32系列中的一款超低功耗微控制器,广泛应用于物联网设备、嵌入式系统和传感器节点等。它内置了多个串口接口,支持DMA传输,这对于处理大量的串口通信数据非常有用,特别是当数据传输速率较高或者需要连续不间断接收数据时。 串口接收不定长数据的核心在于正确配置UART和DMA控制器。在STM32中,UART负责与外部设备进行串行通信,而DMA则可以接管UART的接收过程,无需CPU干预,从而提高系统效率。 1. **UART配置**: - 需要设置波特率、数据位、停止位和校验位。例如,常见配置为9600波特率、8位数据、1位停止和无校验。 - 然后,开启UART接收中断,这样在接收到新数据时,系统会触发中断事件。 - 配置DMA通道,选择UART的接收寄存器作为源,并指定接收数据的内存地址。 2. **DMA配置**: - 选择适当的DMA控制器(例如DMA1或DMA2)和通道,以及传输类型(半字、字节等)。 - 设置传输方向为从外设到内存(Peripheral to Memory,P2M)。 - 指定DMA传输的起始地址和数据长度。对于不定长数据,可能需要动态调整这些参数。 - 开启DMA通道,并将其与UART接收中断相关联。 3. **处理不定长数据**: - 由于数据长度未知,需要在UART接收中断服务程序中检查数据缓冲区的状态。当达到某个预设阈值或者检测到特定结束标志时,停止当前的DMA传输。 - 使用循环缓冲区策略,可以确保即使在数据长度不固定的情况下也能高效地管理接收的数据。 - 一旦收到完整的数据帧,可以启动新的DMA传输,继续接收后续的数据。 4. **代码实现**: - 在STM32CubeMX中配置UART和DMA,自动生成初始化代码。 - 编写中断服务程序,处理UART的接收中断,判断数据长度并控制DMA传输。 - 添加主循环中的逻辑,检查接收数据的完整性和处理已接收的数据。 "RX-DMA.rar"中的代码示例将展示如何完成以上步骤,提供了一个实际操作的例子。开发者可以通过查看和学习这个示例,了解如何在STM32L475上实现串口不定长数据的DMA接收。通过熟练掌握这一技巧,可以有效地提升嵌入式系统的串口通信性能,减少CPU的负担,使系统资源得到更合理的利用。
2025-04-18 21:56:12 21.71MB demo
1
### IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters (Std 1241-2010) #### 标准概述 IEEE Std 1241-2010 是一项针对模拟到数字转换器(Analog-to-Digital Converters, ADC)的专业标准文档,它旨在为ADC的设计、测试与评估提供统一的技术术语和测试方法。该标准由IEEE(电气与电子工程师学会)制定,并在2010年进行了修订。 #### 重要性与目的 该标准的重要性在于其为ADC领域提供了一个统一的标准框架,这对于提高不同制造商之间产品性能的可比性具有重要意义。此外,它还能够帮助工程师和研究人员更好地理解ADC的工作原理、特性和性能指标,从而指导产品的设计、选择与应用。 #### 主要内容 ##### 1. **基本概念与术语** 该标准定义了一系列与ADC相关的专业术语,包括但不限于: - **量化**:将连续变化的模拟信号转换成离散数值的过程。 - **采样**:在特定时间点上获取模拟信号值的过程。 - **量化误差**:实际输出值与理想输出值之间的差异。 - **满量程范围**:ADC可以准确表示的最大输入信号范围。 - **分辨率**:ADC能区分的最小输入信号变化。 - **位数**:用以表示ADC输出的二进制位数,通常用来衡量分辨率。 - **信噪比(SNR)**:有效信号与噪声信号功率之比。 ##### 2. **测试方法** IEEE Std 1241-2010 中详细规定了多种用于测试ADC性能的方法,包括但不限于: - **直流特性测试**:如非线性度、失调电压、增益误差等。 - **交流特性测试**:如信号带宽、采样率、量化误差等。 - **动态特性测试**:如信噪比(SNR)、总谐波失真(THD)、无杂散动态范围(SFDR)等。 - **稳定性测试**:如温度稳定性、电源稳定性等。 ##### 3. **背景知识与理论基础** 该标准还提供了关于ADC的基本背景知识和技术理论,帮助用户更好地理解ADC的工作原理及其关键参数的意义。例如: - **量化理论**:讨论了量化过程中的误差来源及如何减小这些误差。 - **采样理论**:解释了采样频率与信号频率之间的关系,以及奈奎斯特采样定理。 - **转换原理**:介绍了不同类型的ADC(如逐次逼近型、Σ-Δ调制型等)的工作原理。 ##### 4. **案例研究与附录** 标准中还包括了一些具体的案例分析和附录,例如对特定ADC参数的详细解释以及相关的图表和图形。这些内容有助于加深对标准中所涉及技术细节的理解。 #### 结论 IEEE Std 1241-2010 是一个全面而详尽的ADC标准,它不仅为ADC的设计和测试提供了统一的术语体系,而且还详细规定了各种测试方法,帮助工程师们更好地理解和评估ADC的性能。这一标准对于推动ADC技术的发展、促进产品性能的一致性和互操作性都具有重要的意义。无论是对于ADC的研究者、设计师还是使用者来说,熟悉并遵循这一标准都是非常必要的。
2025-04-18 14:35:23 4.18MB ADC
1
本资源详细介绍如何使用 STM32 单片机实现 ADC 模拟信号采集,并通过数据解析后利用串口发送到上位机显示的完整实现。内容包括 STM32 ADC 配置、DMA 数据采集、数据解析方法,以及通过串口输出结果的完整代码和工程文件。适用于初学者和需要快速搭建 ADC 信号采集系统的开发者。 详细描述 1. 适用范围 硬件平台:STM32 系列单片机(以 STM32F103 为例,但可移植到其他 STM32 系列)。 开发工具:Keil MDK 或 STM32CubeIDE。 功能模块: ADC 信号采集(单通道、多通道支持)。 数据解析(去抖动、滤波、代码中注释)。 串口通信,实时发送数据到上位机。 2. 功能说明 ADC 信号采集: 使用 STM32 内部的 ADC 模块,支持单通道或多通道采集。 配置 ADC 转换频率和采样分辨率(12 位精度)。 串口发送: 将解析后的数据通过 UART 发送至上位机。 支持常用波特率设置(如 9600、115200)。 数据格式:十六进制、ASCII 格式可选。
2025-04-16 21:48:50 3.96MB STM32
1
FMC ADC12D2000RF 模块,忍痛出射频直接采集FMC ADC模块,模块基于Ti公司高端ADC12D2000RF芯片,芯片为单通道4GSPS,双通道2GSPS,12bit分辨率,这款芯片国内是封锁的,绝版。 忍痛出。 提供开发包,数据手册,接口VHDL源代码,驱动程序,上位机MATLAB调用代码,非常优秀。 Ti公司推出的ADC12D2000RF是一款高性能的模数转换器(ADC),其设计用于支持高速射频直接采样应用。该芯片具备单通道采样速率高达4GSPS(千兆样点每秒)和双通道采样速率高达2GSPS的性能,以及12bit的高分辨率。ADC12D2000RF适用于需要处理高速和高精度信号的领域,例如雷达、无线通信、卫星通信和测试测量设备。 由于其卓越的技术规格,ADC12D2000RF芯片在国内市场具有较高的应用价值和稀缺性,甚至出现了封锁和供应紧张的情况。这种芯片在市场上已经成为绝版,因此,即使是企业或个人在遇到库存或项目变动时,也十分不舍地出售这类产品。 FMC ADC12D2000RF模块利用了这款ADC12D2000RF芯片的高性能,面向开发者提供了全面的开发支持。模块附带了一系列的开发资源,包括开发包、数据手册、接口VHDL源代码、驱动程序,以及MATLAB调用代码。这些资源的提供大大降低了用户进行开发的门槛,缩短了产品开发周期,提高了开发效率。 在技术应用方面,该模块的高采样率和高分辨率特点使其在多种应用领域具备显著优势。例如,在无线通信领域,它可以帮助工程师设计出能够应对快速信号变化的通信系统。在雷达系统中,高采样率可以确保捕获快速运动目标的信号,而高分辨率则有助于区分小的信号差异。在测试和测量设备中,这类模块能够准确地捕捉到信号的细节,用于分析和验证复杂电路和系统的性能。 另外,该模块还可能适用于电子对抗、光通信、频谱分析、软件定义无线电等专业领域,为这些领域内的工程师和研究者提供重要的技术支持。 根据文件提供的图片文件列表,可见该模块的文档和资料中不仅包括了技术描述文档,还可能包含了相关的图片,这些图片可能涉及模块的实物图、电路板设计图或信号分析图等,用以帮助用户更好地理解模块的外观、结构和功能。 值得一提的是,由于该模块采用了性能优异的ADC芯片,因此其市场价格可能较高,对于预算有限的用户来说,提供完整的开发支持和文档资源,能够在一定程度上弥补成本上的支出,使得用户能够更专注于产品设计和应用开发。 FMC ADC12D2000RF模块集合了高性能ADC芯片、全面的开发支持和丰富的技术文档,使其成为了在射频直接采样领域内不可多得的开发工具,尤其适合那些对信号处理有高要求的应用场合。尽管这款芯片在国内供应紧张,但模块提供的完备资源为用户提供了极大的便利,有助于加速高性能电子设备的开发进程。
2025-04-15 23:22:58 2.73MB 开发语言
1