Swin-Unet是一种基于Swin Transformer的深度学习网络模型,主要应用于图像分割任务。Swin Transformer是Transformer架构在计算机视觉领域的一个创新应用,由Liu等人于2021年提出。它通过引入窗口内的自注意力机制,解决了传统Transformer全局自注意力计算复杂度高的问题,同时保持了对长程依赖的捕捉能力。 Swin Transformer的核心是层次化的结构,分为多个阶段,每个阶段由多个Swin Transformer块组成。这些块内部包含两个主要部分:窗口自注意力层(Window-based Multi-Head Self-Attention, W-MSA)和多层感知机(MLP)。W-MSA在每个窗口内进行自注意力计算,降低了计算复杂度,同时通过移窗策略连接相邻窗口,实现了跨窗口的信息交换。MLP则负责非线性变换,增强特征表达。 Swin-Unet是Swin Transformer与经典Unet结构的结合,继承了Unet的对称双路径设计,用于处理像素级预测任务,如语义分割。Unet的特点是其上下采样和上采样路径,能够有效地结合粗略的全局信息和精细的局部细节,从而在图像分割任务中表现出色。Swin-Unet将Swin Transformer模块集成到Unet的每个跳跃连接中,提高了模型的表示能力和分割精度。 预训练模型“swin-tiny-patch-window7-224.pth”是Swin-Unet网络在大规模数据集上训练得到的权重,其中"swin-tiny"表示这是一个轻量级的模型配置,适合资源有限的环境;"patch-window7"指的是模型使用了7x7的窗口大小进行注意力计算;"224"则代表输入图像的尺寸为224x224像素。这个预训练模型可以被用于初始化自己的Swin-Unet网络,然后在特定任务的微调上使用,以提高模型对新任务的适应性和性能。 在实际应用中,使用Swin-Unet进行图像分割时,首先需要加载这个预训练模型的权重,然后根据目标任务调整网络结构,例如改变输出通道的数量以匹配类别数。接着,用目标数据集进行微调,优化器通常选择Adam或SGD,学习率会采用余弦退火或步进衰减策略。在训练过程中,可以通过监控验证集的表现来调整超参数,以达到最佳性能。 Swin-Unet模型结合了Transformer的全局信息处理能力和Unet的高效特征融合,尤其适用于需要精确像素级预测的任务,如医疗影像分析、遥感图像处理等。而“swin-tiny-patch-window7-224.pth”预训练模型则为研究人员和开发者提供了一个强大的起点,帮助他们更快地在相关领域实现高性能的解决方案。
2025-04-03 21:06:18 100.11MB 机器学习
1
随着信息技术在管理上越来越深入而广泛的应用,管理信息系统的实施在技术上已逐步成熟。本文介绍了微信学习自律养成小程序的设计与实现的开发全过程。通过分析微信学习自律养成小程序的设计与实现管理的不足,创建了一个计算机管理微信学习自律养成小程序的设计与实现的方案。文章介绍了微信学习自律养成小程序的设计与实现的系统分析部分,包括可行性分析等,系统设计部分主要介绍了系统功能设计和数据库设计。 本微信学习自律养成小程序的设计与实现有管理员和用户两个角色。管理员功能有个人中心,用户管理,学习计划管理,计划打卡管理,计划历史管理,留言板管理,系统管理等。用户功能有注册登录,学习计划,计划打卡,计划历史,留言板管理,留言板等。因而具有一定的实用性。 本站后台采用Java的SSM框架进行后台管理开发,可以在浏览器上登录进行后台数据方面的管理,MySQL作为本地数据库,微信小程序用到了微信开发者工具,充分保证系统的稳定性。系统具有界面清晰、操作简单,功能齐全的特点,使得微信学习自律养成小程序的设计与实现管理工作系统化、规范化。 关键词:微信学习自律养成小程序的设计与实现;SSM框架;MYSQL数据库
2025-04-03 10:52:00 30.9MB 微信小程序
1
SSA优化下的核极限学习机(SSA-KELM)回归预测MATLAB代码详解:电厂运行数据应用与操作指南,SSA优化下的核极限学习机(SSA-KELM)回归预测MATLAB代码详解:清晰注释,EXCEL数据读取,电厂运行数据应用示例,SSA麻雀搜索算法优化KELM核极限学习机(SSA-KELM)回归预测MATLAB代码 代码注释清楚。 main为主程序,可以读取EXCEL数据。 很方便,容易上手。 (电厂运行数据为例) 温馨提示:联系请考虑是否需要,程序代码,一经出,概不 。 ,SSA-KELM; 回归预测; MATLAB代码; 代码注释; 主程序; EXCEL数据读取; 电厂运行数据。,SSA-KELM回归预测模型:基于MATLAB的电厂运行数据优化分析
2025-04-02 21:51:29 4.46MB xhtml
1
强化学习中样本的重要性加权转移 此存储库包含我们的强化学习中的重要性加权样本转移》的代码,该代码已在ICML 2018上接受。我们提供了一个小库,用于RL中的样本转移(名为TRLIB),包括重要性加权拟合Q的实现-迭代(IWFQI)算法[1]以及有关如何重现本文提出的实验的说明。 抽象的 我们考虑了从一组源任务中收集的强化学习(RL)中经验样本(即元组)的转移,以改善给定目标任务中的学习过程。 大多数相关方法都专注于选择最相关的源样本来解决目标任务,但随后使用所有已转移的样本,而无需再考虑任务模型之间的差异。 在本文中,我们提出了一种基于模型的技术,该技术可以自动估计每个源样本的相关性(重要性权重)以解决目标任务。 在所提出的方法中,所有样本都通过批处理RL算法转移并用于解决目标任务,但它们对学习过程的贡献与它们的重要性权重成正比。 通过扩展监督学习文献中提供的重要性加
1
该项目聚焦于人工智能领域中的强化学习应用,具体是针对移动边缘计算(MEC)环境下的计算卸载和资源分配问题。MEC是一种新兴的无线通信技术,它将云计算能力下沉到网络边缘,为用户提供低延迟、高带宽的服务。在MEC环境中,智能设备可以将计算密集型任务卸载到附近的边缘服务器进行处理,从而减轻本地计算负担,提升能效。 强化学习是机器学习的一个分支,其核心思想是通过与环境的交互来优化决策策略。在这个项目中,深度强化学习(Deep Reinforcement Learning, DRL)被用作解决MEC的计算卸载和资源分配问题的方法。DRL结合了深度学习的特征表示能力和强化学习的决策制定能力,能够处理复杂的、高维度的状态空间。 在计算卸载方面,DRL算法需要决定哪些任务应该在本地执行,哪些任务应上传至MEC服务器。这涉及到对任务计算需求、网络状况、能耗等多种因素的综合考虑。通过不断地试错和学习,DRL代理会逐渐理解最优的策略,以最小化整体的延迟或能耗。 资源分配方面,DRL不仅要决定任务的执行位置,还要管理MEC服务器的计算资源和网络带宽。这包括动态调整服务器的计算单元分配、优化传输速率等。目标是最大化系统吞吐量、最小化用户等待时间或者平衡服务质量和能耗。 项目可能包含以下几个关键部分: 1. **环境模型**:构建一个模拟MEC环境的模型,包括设备状态、网络条件、计算资源等参数。 2. **DRL算法实现**:选择合适的DRL算法,如DQN(Deep Q-Network)、DDPG(Deep Deterministic Policy Gradient)、A3C(Asynchronous Advantage Actor-Critic)等,并进行相应的网络结构设计。 3. **训练与策略更新**:训练DRL代理在环境中学习最优策略,不断更新网络权重。 4. **性能评估**:通过大量实验验证所提出的算法在不同场景下的性能,如计算效率、能耗、服务质量等。 5. **结果分析与优化**:分析训练结果,找出可能存在的问题,对算法进行迭代优化。 通过这个项目,你可以深入理解强化学习在解决实际问题中的应用,同时掌握深度学习与MEC领域的最新进展。对于想要从事AI和无线通信交叉领域的研究者或工程师来说,这是一个非常有价值的实践案例。。内容来源于网络分享,如有侵权请联系我删除。
1
深度学习要用到Tensorflow框架,需要安装Tensorflow,而在网络速度慢的环境下,或者外网受限的情况下,需要离线安装Tensorflow。此离线安装包中包括Tensorflow包及相关依赖包,具体如下: absl_py-2.1.0-py3-none-any.whl astunparse-1.6.3-py2.py3-none-any.whl cachetools-5.3.3-py3-none-any.whl certifi-2024.2.2-py3-none-any.whl charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl flatbuffers-1.12-py2.py3-none-any.whl gast-0.4.0-py3-none-any.whl google_auth-2.29.0-py2.py3-none-any.whl google_auth_oauthlib-0.4.6-py2.py3-none-any.whl google_pasta-0.2.0-py3-none-any.whl grpcio-1.62.1
2025-04-02 18:09:09 475.42MB tensorflow tensorflow 深度学习
1
五轴联动机床是一种高度复杂的机械加工设备,它在航空、航天、汽车制造、医疗器械等领域有着广泛的应用。五轴联动指的是机床的X、Y、Z三个直线轴加上A、B、C三个旋转轴可以同时进行控制,实现了对工件的全方位、多角度加工,极大地提高了加工精度和效率。 在学习五轴联动机床的过程中,仿真程序扮演了至关重要的角色。这种仿真软件允许用户在虚拟环境中模拟实际的五轴加工过程,避免了在真实设备上进行实验可能带来的成本和风险。通过仿真,学员能够理解和掌握五轴联动机床的工作原理、编程方法以及工艺参数的设定,提高操作技能和问题解决能力。 OpenGL是计算机图形学的一种编程库,常用于创建高质量的2D和3D图形。在五轴联动机床仿真程序中,OpenGL被用来生成逼真的三维模型,显示机床结构、工件形状和刀具运动轨迹,使用户能够直观地观察和分析加工过程。OpenGL的强大功能使得仿真更加接近真实情况,增强了学习体验。 在学习五轴联动机床仿真程序时,主要涉及以下几个方面的知识点: 1. 五轴联动机床的基本概念:理解五轴联动机床的结构组成、工作原理及其与传统三轴机床的区别。 2. 机床控制与编程:学习G代码、M代码等机床编程语言,掌握如何编写针对五轴联动机床的加工程序。 3. 五轴加工策略:了解各种五轴加工策略,如平行切削、偏置切削、扫描切削等,以及它们在不同应用场景下的优缺点。 4. 三维建模与可视化:利用OpenGL进行工件、刀具和机床的三维建模,掌握图形渲染和交互技术。 5. 误差补偿与优化:理解五轴机床的误差来源,学习如何通过软件进行误差补偿,提高加工精度。 6. 实时模拟与仿真:学习如何在仿真环境中实时监控加工过程,包括刀具路径、切削力、速度和温度等参数的变化。 7. 故障诊断与预防:通过仿真学习识别和解决可能遇到的故障,提高问题解决能力。 通过上述知识点的学习,配合五轴联动机床仿真程序的实践操作,不仅可以加深理论理解,也能提高实际操作能力,为从事五轴加工工作打下坚实的基础。在实践中,不断进行模拟训练,将有助于提升到更高级别的技能水平,成为一名精通五轴联动机床的专业人士。
2025-04-02 17:45:07 1.58MB
1
在机器学习领域,阅读经典论文是提升理解和技能的关键步骤。这些论文往往承载着学科发展的重要里程碑,揭示了新的算法、理论或实践经验。"机器学习必学系列经典论文"的压缩包,显然为我们提供了一个深入研究这个领域的重要资源库。下面,我们将详细探讨其中可能包含的知识点。 "机器学习"作为标签,暗示了这个压缩包可能包含各种类型的机器学习论文,如监督学习、无监督学习、半监督学习、强化学习等。这可能涵盖从基础的线性回归和逻辑回归到复杂的深度学习模型,如卷积神经网络(CNN)和循环神经网络(RNN)。 "必看论文"标签进一步强调了这些论文在机器学习领域的影响力和重要性。例如,"Backpropagation Through Time"(BPTT)对于理解RNN的工作原理至关重要;"A Neural Probabilistic Language Model"引入了词嵌入,改变了自然语言处理的面貌;"ImageNet Classification with Deep Convolutional Neural Networks"展示了深度学习在图像识别中的强大能力,推动了计算机视觉的进步。 压缩包中的"机器学习经典论文1"可能包含的是某个特定主题的经典文献。例如,它可能包含了Yann LeCun等人在1998年发表的"Gradient-Based Learning Applied to Document Recognition",这篇论文详细介绍了卷积神经网络(CNN)在手写数字识别上的应用,为现代深度学习的发展奠定了基础。 此外,其他可能的主题包括SVM(支持向量机)的经典论文,如"Support Vector Networks",或者是关于决策树和随机森林的论文,如"Random Forests"。也可能有如"Deep Residual Learning for Image Recognition"这样的深度学习创新,它提出了残差网络(ResNet),解决了深度神经网络训练时的梯度消失问题。 在研究这些经典论文时,我们不仅能了解到算法的细节,还能学习到如何设计实验、评估模型性能以及解读和解释结果的方法。同时,通过追踪论文的引用,可以发现更多的研究脉络,从而构建出一个全面的机器学习知识框架。 这个压缩包是机器学习初学者和专业人士的宝贵资源,通过深入研读这些论文,我们可以更深入地理解机器学习的核心原理,跟踪领域的发展动态,并激发自己的创新思维。
2025-04-02 17:35:03 69.24MB 机器学习 必看论文
1
基于Simulink仿真的PID控制、BP-PID控制与PSO-BP-PID控制策略研究:清晰易懂的高质量代码实现与学习指导,基于Simulink仿真的PID控制、BP-PID控制与PSO-BP-PID控制算法的代码解析:清晰易懂,质量卓越,助力新手学习理解,PID控制、BP-PID控制、PSO-BP-PID控制的Simulink仿真。 代码清晰、易懂,代码质量极高,便于新手学习和理解。 ,PID控制; BP-PID控制; PSO-BP-PID控制; Simulink仿真; 代码清晰; 代码质量高; 便于学习理解。,Simulink仿真:PID、BP-PID及PSO-BP-PID控制代码的清晰解读
2025-04-02 15:33:37 553KB 正则表达式
1