内容概要:本文介绍了一种利用DeeplabV3+模型进行视杯与视盘分割的方法,目的是为了辅助青光眼的早期诊断。主要技术包括数据预处理、使用ResNet18改造的DeeplabV3+模型、超参数调优、可视化结果评估及简单的GUI设计。通过这一系列流程,能够有效提升模型的准确性和实用性。 适合人群:适用于医学影像研究人员、深度学习爱好者和技术开发者,尤其关注医疗AI应用领域的人士。 使用场景及目标:该项目可以应用于临床眼科诊疗系统中,帮助医生快速高效地识别出视网膜图像中的关键结构;对于科研工作者而言,该模型还可以作为研究基线模型进一步探索新的改进方法。
2025-03-27 20:59:16 33KB DeeplabV3+ 医学影像处理 PyTorch
1
yolov8 一、YOLOv8教程知识点概览 章节知识点目录 1.YOLOv8概述与基础 2.YOLOv8模型架构解析 3.YOLOv8训练与优化 4.YOLOv8数据准备与处理 5.YOLOv8模型评估与测试 6.YOLOv8实战应用 二、每章重点内容 1. YOLOv8概述与基础 重点:介绍YOLO(You Only Look Once)系列的发展历程,从YOLOv1到YOLOv8的主要改进点。 内容:简述YOLOv8的实时目标检测能力、单阶段检测框架的特点,以及与其它目标检测算法(如Faster R-CNN、SSD)的对比。 2. YOLOv8模型架构解析 重点:详细解析YOLOv8的网络结构,包括Backbone(主干网络)、Neck(颈部网络)和Head(预测头)的设计。 内容:介绍YOLOv8如何结合CSPNet、PANet等结构提升特征提取与融合能力,以及引入的注意力机制(如SAM、CAM)如何增强模型对关键信息的捕捉能力。 3. YOLOv8训练与优化 重点:探讨YOLOv8的训练策略,包括损失函数的设计、学习率调整、数据增强技术等。
2025-03-27 19:43:02 18KB 课程资源 yolov
1
① 地震灾害评估及建筑结构特征数据集 ② 最新地震爆发数据集 (1990-02-03 至 2023-03-03) ③ 土耳其地震救灾推文数据集 ④ 阿联酋地震数据集 (2010 至 2023) ⑤ 新西兰地震数据集 ⑥ 日本地震数据集 (2019/1/1-2021/12/03) ⑦ 2023全球地震数据集 ⑧ 土耳其地震发数据集 (1910 至 2017) ⑨ 希腊地震数据集 (1965 至 2023 ) ⑩ 印度尼西亚地震数据集 11 全球地震数据集 (2001 年 1 月 1 日至 2023 年 1 月 1 日) 12 地震感知数据集 (那不勒斯地震事件的公众反应和情绪反应分析)
2025-03-27 18:56:07 172.14MB 数据集 地震数据 机器学习
1
全国路网数据是地理信息系统(GIS)中的重要组成部分,它包含了大量的地理信息,如公路等级、路线方向、里程桩号等。2020年全国路网数据集为研究者和爱好者提供了对我国交通网络的详尽理解。该数据通常以矢量数据格式存储,便于进行空间分析和可视化。 矢量数据是一种描述地理特征几何形状和属性的数据结构,它由点、线、面等基本元素组成。在路网数据中,每条道路都可以被视为一个线要素,包含了起点、终点、中点坐标以及道路的宽度、类型(高速公路、国道、省道等)和相关的交通信息。这种数据格式使得数据能够精确地表示复杂的地理形状,同时占用较少的存储空间。 WGS84是全球定位系统(GPS)所使用的坐标系,也是国际上广泛接受的地球参考框架。它定义了地球的形状和大小,并以三维笛卡尔坐标系统表示地球表面的位置。在2020年全国路网数据集中,所有坐标都基于WGS84标准,确保了数据的全球一致性,方便进行跨地区的地理空间分析。 2020osm道路文件可能是指OpenStreetMap(OSM)的数据。OpenStreetMap是一个开源的全球地图项目,用户可以贡献和编辑地理信息。OSM数据通常包括道路、建筑、水体、公共交通线路等各种地物,且数据质量高、更新频繁。2020年的OSM道路数据意味着包含了那个时间段内的最新道路信息,覆盖了我国的公路网络,对于城市规划、交通研究、导航应用等具有很高的价值。 利用这样的路网数据,我们可以进行以下几种分析和应用: 1. **路径规划**:通过计算两点之间的最短或最快路线,为导航系统提供基础。 2. **交通流量分析**:结合交通监控数据,分析道路的拥堵状况,为交通管理提供决策支持。 3. **城市规划**:评估现有道路网络的效率,规划新的道路或改进现有道路布局。 4. **环境影响评估**:研究新道路建设对周边生态环境的影响。 5. **灾害响应**:在紧急情况下,快速确定最佳救援路线。 6. **商业选址**:根据道路可达性评估潜在的店铺位置。 了解并掌握如何处理和分析这些路网数据是GIS专业人员的基本技能。这涉及到数据的导入导出、坐标转换、空间查询、网络分析等多个步骤。通过学习和使用这样的数据,我们可以深入理解国家的交通网络,推动智能交通系统的发展,提高城市管理的科学性和效率。
2025-03-27 09:21:33 504.92MB 矢量数据 wgs84
1
深度学习中的目标检测技术是计算机视觉的一个重要分支,它涉及到从图像或视频中识别出感兴趣的目标物体,并对其进行定位的过程。本文将介绍目标检测的深度学习框架,包括Rcnn系列模型,它们是如何工作的,以及一些其他的深度学习架构。 物体检测问题可以概述为计算机视觉中的四个基本任务:图像分类、图像定位、物体检测和物体分割。图像分类旨在识别图片中的主要物体并将其归类到预定义的类别中;图像定位是指在图片中标注出物体的位置;物体检测在图像分类的基础上,需要检测到图片中所有的物体,并给出每个物体的边界框;物体分割则进一步细化,需要逐像素地识别出图像中的物体,并给出准确的轮廓。在无人驾驶领域,这些技术被广泛应用于道路场景的理解,以辅助车辆做出准确的导航和决策。 在目标检测的发展历程中,有一系列的经典算法,如Deformable Parts Model(可变形部件模型),它使用了基于部件的方法来进行物体检测,尤其在2010年Felzenszwalb等人的工作“Object Detection with Discriminatively Trained Part Based Models”中,提出了包括SGD训练方法、NMS(非极大值抑制)和hard example挖掘等技术。这些技术至今仍在使用,对后续的方法产生重要影响。 接下来,Rcnn系列模型在目标检测领域产生了深远的影响。RCNN(Regions with CNN features)是一个里程碑式的工作,它通过区域建议来定位图像中的物体,并使用CNN提取特征进行分类。Fast RCNN通过RoI Pooling改进了特征提取过程,大大提高了效率。Faster RCNN进一步引入了区域建议网络(Region Proposal Network,RPN),实现了端到端的训练,并大幅度提升了检测速度。 在Faster RCNN的基础上,Mask RCNN增加了目标分割的功能,能够同时输出物体的边界框和精确的像素级掩码。这一系列的进展不仅优化了模型的检测速度,也提高了检测精度。除此之外,还有其他的一些模型,例如RFCN(Region-based Fully Convolutional Network),它使用全卷积网络来实现端到端的训练和检测。 PyTorch代码的引入使得深度学习模型的实现变得更加直观和易于操作。在七月在线课程中,将对这些模型框架进行深入的代码讲解,使学员能够更好地理解模型背后的原理以及如何在实际中应用。 除了模型和算法,物体检测的研究还会关注最新的会议论文和进展。比如ECCV(European Conference on Computer Vision)2018会议上的工作,为这一领域的研究人员和实践者提供了新的思路和方向。 在应用方面,目标检测技术在无人驾驶中的应用显得尤为重要。课程将通过无人驾驶这一应用场景,深入探讨物体检测与物体分割技术如何一起工作,并在实际中发挥作用。 在教学方式上,七月在线课程对以往的课程内容进行了更新,使用80%的中文内容,并对授课顺序进行了调整,使得课程内容更加系统和连贯。此外,所有的教学资料都被移植到Google在线幻灯片中,方便学员的学习和复习。 总结来说,深度学习的目标检测技术是计算机视觉领域的一项核心任务,涉及到图像理解的各个方面。从经典的Deformable Parts Model到Rcnn系列模型,再到近年来的Mask RCNN和PyTorch代码实现,目标检测技术一直在快速发展和进步。无人驾驶等实际应用场景对目标检测技术的需求推动了相关技术的研究和应用,使之成为推动人工智能技术发展的重要力量。
2025-03-26 21:53:51 2.99MB 深度学习 目标检测 计算机视觉
1
随着共享单车在全球范围内的普及,城市交通出行模式发生了巨大变化。伦敦作为国际化大都市,交通拥堵问题日益严重,共享单车作为一种绿色、环保、便捷的出行方式,逐渐成为解决交通问题的重要组成部分,然而,要实现共享单车系统的高效运营,必须深入了解用户的使用习惯和需求。本项目对伦敦共享单车数据进行了全面分析,涵盖了数据清洗、特征工程(构建新特征)、骑行高峰期分析、站点流量分析,以及通过聚类分析将800个站点划分为5类,并对每一类站点提出建议,最后通过方差分析探讨了影响共享单车流量的因素,通过这些步骤,可以识别高频使用的时间段和站点,为运营商提供优化调度和资源分配的科学依据。
1
融合多策略灰狼优化算法:源码详解与性能优越的学习资料,原创改进算法,包括混沌初始化、非线性控制参数及自适应更新权重等策略,融合多策略改进灰狼优化算法:源码详解与深度学习资料,高效性能与原创算法技术,融合多策略的灰狼优化算法 性能优越 原创改进算法 源码+详细注释(方便学习)以及千字理论学习资料 改进策略:改进的tent混沌初始化,非线性控制参数,改进的头狼更新策略,自适应更新权重 ,融合灰狼优化算法; 性能优越; 原创改进算法; 改进策略; 详细注释; 理论学习资料,原创灰狼优化算法:融合多策略、性能卓越的改进版
2025-03-26 17:04:42 1.01MB ajax
1
深度学习车牌识别系统在当前社会中具有极其重要的作用,随着中国经济水平的提升和私家车数量的激增,仅依靠传统人工方式进行车牌识别已变得不切实际。特别是在车辆违法行为监测、高速公路收费站等重要区域,采用软件系统进行车牌识别的需求尤为迫切。传统的车牌识别技术虽然在一定程度上可以满足需求,但已无法应对日益增长的数据量和复杂环境。 深度学习的出现为车牌识别带来了革命性的改变。利用深度学习模型,如YOLOv5(You Only Look Once version 5),我们可以构建一个高效的车牌识别系统。YOLOv5是一种先进的实时目标检测系统,它能在图像中直接定位和识别出车辆的牌照。相比于传统的目标检测模型,YOLOv5的优势在于其处理速度快、准确性高、实时性强,非常适合用于需要快速响应的车牌识别场合。 在设计和实现基于YOLOv5的车牌识别系统时,需要考虑到多个关键技术环节,例如图像采集、预处理、模型训练、车牌定位、字符分割、字符识别等。图像采集主要依赖于高清摄像头,能够在不同光照、天气条件下稳定地捕捉到车辆图像。预处理过程通常包括图像的缩放、去噪、增强等操作,目的是减少外部干扰,提高识别准确率。 模型训练则是整个系统的核心,需要使用大量的车牌图像数据集对YOLOv5进行训练。这些数据集既包括不同地区、不同型号车辆的车牌,也包括各种天气、光照条件下的车牌图像。通过深度学习技术,YOLOv5能够自主学习到车牌的特征,并将其用于未来的识别任务中。 车牌定位是确定车牌在图像中的具体位置,这一步骤对于提高整个系统的效率至关重要。字符分割则是将车牌上的每个字符从背景中分离出来,为后续的字符识别做准备。字符识别部分则是利用训练好的模型对分割出的字符进行识别,最终输出车牌号码。 Python语言在开发此次车牌识别系统中起到了关键作用。Python具有丰富的库支持,如OpenCV用于图像处理,Pandas用于数据处理等,使得开发过程更为高效。同时,Python简洁的语法和强大的功能也便于实现复杂的算法和模型。 目前,车牌识别技术的应用范围非常广泛,从车辆进出管理、交通监控到智能停车系统等,都可利用车牌识别技术来提高运行效率。在未来,随着深度学习技术的进一步发展,车牌识别系统将会更加智能、准确和高效,为智能交通管理、智慧城市构建提供有力的技术支持。 基于YOLOv5的深度学习车牌识别系统不仅能够极大提升车牌识别的准确率和效率,而且对于推动交通管理自动化和智能化具有重要意义。随着技术的不断进步和创新,我们有理由相信,未来的车牌识别技术将会更加成熟和普及,为人们的生活带来更多的便利。
2025-03-26 15:26:46 1.14MB 深度学习 毕业设计
1
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
2025-03-26 10:27:11 192B 深度学习
1
一个包含网络钓鱼邮件数据的集合。网络钓鱼邮件是一种欺诈性的电子邮件,通常伪装成合法的通信,目的是诱骗收件人透露敏感信息,如用户名、密码、信用卡信息等。这个数据集可能被用于研究、开发和测试反钓鱼技术,帮助识别和防范网络钓鱼攻击。是一个综合性的网络钓鱼邮件数据集,由研究人员整理而成,旨在帮助研究者分析网络钓鱼邮件的特征并改进检测方法。该数据集整合了多个来源的电子邮件数据,包括Enron、Ling、CEAS、Nazario、尼日利亚诈骗和SpamAssassin等数据集,涵盖了邮件的正文、主题、发件人和收件人信息等内容。 最终的数据集包含约82,500封邮件,其中42,891封为钓鱼邮件,39,595封为合法邮件。这些数据可用于训练和测试机器学习模型,以提高对网络钓鱼邮件的识别能力。数据集的结构清晰,每封邮件都有明确的标签,方便研究人员进行分类和分析。此外,该数据集还被用于开发基于BERT的自然语言处理模型,以实现高效的网络钓鱼邮件检测。
2025-03-25 20:39:39 77.12MB 机器学习
1