大语言模型是自然语言处理领域的一个基础模型,其核心任务和核心问题是对自然语言的概率分布进行建模。随着研究的深入,大量不同的研究角度展开了系列工作,包括n元语言模型、神经语言模型以及预训练语言模型等,这些研究在不同阶段对自然语言处理任务起到了重要作用。 语言模型起源于语音识别领域,输入一段音频数据时,语音识别系统通常会生成多个候选句子,语言模型需要判断哪个句子更合理。随着技术的发展,语言模型的应用范围已经扩展到机器翻译、信息检索、问答系统、文本摘要等多个自然语言处理领域。语言模型的定义是:对于任意词序列,模型能够计算出该序列构成一句完整句子的概率。例如,对于词序列"这个网站的文章真水啊",一个好的语言模型会给出较高的概率;而对于词序列"这个网站的睡觉苹果好好快",这样的词序列不太可能构成一句完整的话,因此给出的概率会较低。 在正式定义语言模型时,可以以中文语言模型为例。假定我们想要创建一个中文语言模型,VV表示词典,词典中的元素可能包括"猫猫、狗狗、机器、学习、语言、模型"等。语言模型就是这样一个模型:给定词典VV,能够计算出任意单词序列ww1, ww2, ..., wnn构成一句话的概率p(ww1, ww2, ..., wnn),其中p≥0。计算这个概率的最简单方法是计数法,假设训练集中共有N个句子,统计一下在训练集中出现的序列(ww1, ww2, ..., wnn)的次数,记为n,那么p(ww1, ww2, ..., wnn)就等于n/N。但可以想象,这种方法的预测能力几乎为0。 语言模型的发展阶段主要包括:定义语言模型、发展生成式语言模型、语言模型的三个发展阶段、预训练语言模型的结构。谷歌的Transformer模型的出现以及基于此模型的各类语言模型的发展,还有预训练和微调范式在自然语言处理各类任务中取得突破性进展,从OpenAI发布GPT-3开始,对语言模型的研究逐渐深入。尽管大型模型的参数数量巨大,通过有监督的微调和强化学习能够完成非常多的任务,但其基础理论仍然离不开对语言的建模。 大语言模型的发展经历了从基于规则和统计的传统语言模型,到深度学习驱动的复杂模型的转变。早期的语言模型主要依赖于统计方法,通过分析大量语料库中的词序列出现频率来预测下一个词或句子的可能性。随着深度学习技术的兴起,神经网络语言模型,尤其是基于RNN(循环神经网络)和LSTM(长短期记忆网络)的模型开始主导这一领域。这些模型能够捕捉词序列之间的长距离依赖关系,并有效处理复杂的语言现象。 然而,神经网络语言模型的一个显著缺点是需要大量的计算资源和大规模的训练语料库。这导致了预训练语言模型的出现,其中最具代表性的是以GPT(Generative Pretrained Transformer)和BERT(Bidirectional Encoder Representations from Transformers)为代表的模型。这些模型通常在海量的无标签文本上进行预训练,学习丰富的语言表示,然后通过微调(fine-tuning)适应具体的下游任务。预训练语言模型的成功不仅推动了自然语言处理技术的边界,也带来了全新的研究范式。 语言模型的性能评估通常采用困惑度(perplexity)这一指标,它反映了模型对于数据的预测能力。困惑度越低,表示模型预测效果越好,语言模型的性能越强。在实际应用中,除了困惑度之外,还需要考虑模型的泛化能力、计算效率、可扩展性等因素。 随着语言模型技术的不断成熟,我们已经看到了它在多个领域的成功应用,如智能助手、机器翻译、情感分析、内容推荐等。同时,大型语言模型也引发了一系列的讨论和挑战,包括模型的可解释性、偏见和公平性问题、资源消耗问题以及其对人类工作的潜在影响等。未来,随着研究的深入和技术的发展,我们有望看到更加高效、智能、并且具有社会责任感的大语言模型。
2025-03-28 11:08:19 1.7MB
1
机器学习模型案例与SHAP解释性分析:涵盖类别与数值预测,CatBoost、XGBoost等六大模型深度解析及SHAP分析比较,shap分析代码案例,多个机器学习模型+shap解释性分析的案例,做好的多个模型和完整的shap分析拿去直接运行,含模型之间的比较评估。 类别预测和数值预测的案例代码都有,类别预测用到的6个模型是(catboost、xgboost、knn、logistic、bayes,svc),数值预测用到的6个模型是(线性回归、随机森林、xgboost、lightgbm、支持向量机、knn),机器学习模型; SHAP解释性分析; 多个模型比较评估; 类别预测模型(catboost、xgboost、knn、logistic、bayes、svc); 数值预测模型(线性回归、随机森林、xgboost、lightgbm、支持向量机、knn); 完整shap分析代码案例; 模型之间比较评估。,"多模型SHAP解释性分析案例集:类别预测与数值预测的全面比较评估"
2025-03-27 23:28:10 47KB ajax
1
1、前端环境 node(14.21.3) VueCli 2 element-ui(^2.15.14) axios node-sass(^4.14.1) sass-loader(^7.3.1) js-md5(^0.8.3) 2、后端环境 Maven JDK8 springboot
2025-03-26 14:59:26 227KB vue.js java 人工智能
1
Deepseek本地大模型在容器化的环境下进行了部署,并基于.Net4.7.1(WinForm),该版本为离线运行模式。本项目的特色在于实现了无需联网即可运行完整的大模型功能的离线解决方案,适合需要独立运行环境的应用场景。通过容器化技术,确保了应用的高度可扩展性和稳定性;同时,采用C#和Windows Forms框架构建界面、操作简便的用户交互界面。作为完全离线的工具,能够在任何网络环境下正常运行,满足需要独立部署大模型服务的场景需求。
2025-03-12 16:13:34 9.99MB
1
大模型微调自我认知数据集
2025-02-25 22:59:02 20KB 数据集 自我认知 python 模型微调
1
2023年AI大模型应用中美比较研究(附全文)
2024-12-04 17:59:30 10.28MB 人工智能
1
总计38GB,包含: 真人\黑幽人造人 v1030.safetensors 真人\chilloutmix .safetensors 真人\极氪写实MAX-极氪白系列模型 V6.safetensors 真人\majicMlXrealistic麦橘写实 v6.safetensors 二次元\wintermoonmix A.safetensors 二次元\LunZi_2D动漫风小说推文海报插画真人转动漫手绘通用大模型_v1.0.safetensors 二次元\darkSushiMixMix brighterPruned.safetensors 二次元\AWPainting v1.2.safetensors 二次元\anything-v5-PrtRE.safetensors
2024-11-16 10:59:40 112B
1
作为 6G 的研究热点,网络与 AI 被 ITU-R 正式提出作为 6G 的 6 大场景之一。其一直以来受到学术和工业界的广泛关注,6GANA 也提出了网络 AI 的理念并展开了深入的研究。而随着大模型的兴起以及其在各行业表现出来的强大潜力,可以预见到大模型也将在 6G 网络中扮演重要的角色,相关的研究也将逐渐进入高发期。本白皮书将首先对网络大模型(NetGPT)给出明确的定义,随后从基础理论、场景需求、网络架构、部署管控、数据治理等方面系统阐述 NetGPT 的10 大重点研究问题,分析潜在的研究路线,希望能够为后续的 NetGPT 的相关工作指引方向。
2024-11-06 16:08:50 1.52MB 网络
1
### Stable Diffusion 商业变现与绘画大模型多场景实战 #### 一、Stable Diffusion 概述 Stable Diffusion 是一种先进的文本到图像生成技术,基于潜在扩散模型(Latent Diffusion Models, LDMs)。这项技术的核心优势在于其能够根据文本输入快速生成高质量且高分辨率的图像。与传统的扩散模型相比,Stable Diffusion 通过引入隐向量空间解决了处理速度慢的问题,并因此在多种应用场景中表现出色。 #### 二、Stable Diffusion 技术详解 ##### 1. 文本到图像(Text-to-Image)生成过程 **核心思想**:Stable Diffusion 的核心理念是将每张图片视为遵循某种概率分布的实体,并利用文本信息作为引导,逐步将随机噪声转化为与文本描述相匹配的图像。 **主要步骤**: - **文本编码**:需要将人类语言的文本输入转换为机器可理解的形式。这一过程由文本编码器完成,它将文本转换为一系列语义向量。 - **图片生成**:随后,基于文本编码器产生的语义向量,图片生成器开始工作,逐步构建出符合文本描述的图像。 ##### 2. 关键组件解析 - **文本编码器 (Text Encoder)**:该模块负责将文本信息转换为语义向量。通常采用 CLIP 模型实现此功能,输入为文本字符串,输出则是一系列含有文本信息的语义向量。 - **图片信息生成器 (Image Information Generator)**:这部分是 Stable Diffusion 相对于传统扩散模型的关键不同之处。它接收文本编码器输出的语义向量作为控制条件,并生成低维图片向量(例如 64x64 尺寸的图像向量),而不是直接生成最终图像。这有助于减少计算资源需求并提高处理速度。 - **图片解码器 (Image Decoder)**:最后一步是将图片信息生成器产生的低维图片向量解码回高分辨率图像。这一过程通常涉及深度学习技术,如卷积神经网络等。 #### 三、Stable Diffusion 在商业领域的应用 ##### 1. 商业变现策略 - **版权销售**:通过生成独特且高质量的图像,创作者可以将其作为艺术品或设计元素出售版权。 - **定制服务**:提供基于客户特定需求的图像生成服务,例如个性化头像、品牌标识等。 - **平台合作**:与各类平台合作,为用户提供生成图像的功能,从而增加平台吸引力并创造新的收入来源。 ##### 2. 多场景实战案例 - **广告设计**:自动根据产品描述生成创意广告图像。 - **游戏开发**:根据游戏背景故事快速生成概念艺术或游戏角色。 - **虚拟现实与增强现实**:基于文本描述生成沉浸式环境中的视觉元素。 - **教育领域**:为在线课程或电子书籍创建插图,提高教学内容的吸引力。 #### 四、总结 Stable Diffusion 技术不仅在理论层面上实现了对传统扩散模型的重大突破,而且在实际应用中也展现出了广泛的可能性。无论是通过版权销售、提供定制服务还是与其他平台合作等方式,都可以看到其在商业领域的巨大潜力。未来,随着技术的不断发展和完善,我们可以期待更多基于 Stable Diffusion 的创新应用出现。 通过深入理解 Stable Diffusion 的工作原理和技术特点,我们可以更好地把握其在未来市场中的发展方向,并探索更多的应用场景。
2024-10-15 17:51:04 3KB 课程资源
1
从零开始大模型开发与微调基于PyTorch与ChatGLM
2024-09-24 21:55:13 174.56MB pytorch
1