内容概要:本文档介绍了《自然语言处理》课程设计的四个实验,涵盖了文本聚类、文本分类、文本情感分析和个性化新闻推荐。实验一通过经典机器学习方法对新闻数据进行文本聚类,使用TF-IDF和KMeans算法,分析了文本数据的预处理、特征提取和模型评估。实验二基于经典机器学习模型(SVM、K近邻、随机森林)对新闻进行分类,通过数据清洗、可视化、文本预处理、特征向量化和模型选择,实现了对新闻内容的精准分类。实验三利用深度学习方法(TextCNN、TextRNN、TextLSTM)对天问一号事件的Bilibili评论进行情感分析,通过数据探索、文本预处理、模型构建与评估,揭示了用户对航天事件的情感倾向。实验四基于浏览记录实现个性化新闻推荐,通过数据探索、预处理、构建物品相似度矩阵,实现了基于物品的协同过滤推荐。 适合人群:具备一定编程基础,对自然语言处理和机器学习感兴趣的高校学生或初入职场的研发人员。 使用场景及目标:①理解文本聚类、分类、情感分析和个性化推荐的基本原理和实现方法;②掌握文本数据的预处理、特征提取和模型选择技巧;③熟悉经典机器学习和深度学习在自然语言处理中的应用。 其他说明:本文档详细展示了每个实验的具体步骤、代码实现和运行结果,帮助读者全面了解自然语言处理的实践过程。建议读者结合实际项目需求,灵活应用所学知识,逐步提升对自然语言处理技术的理解和应用能力。
1
内容概要:文章详细记录了通过 Matlab 实现数字信号处理实验的过程,重点探讨了地表高程图的数据处理方法,包括图像三维可视化、梯度计算及着陆安全区评估。 适合人群:适用于对数字信号处理感兴趣的学生和研究人员,尤其是网络工程专业的本科生。 使用场景及目标:①学习使用 Matlab 进行图像处理的基本技巧,如卷积和滤波器设计;②掌握地表高程图的三维可视化技术;③理解如何评估和标记安全着陆区域。 其他说明:文中提供了详细的代码实现和实验步骤,有助于读者理解和复现实验内容。 在数字信号处理领域,地表高程数据分析是一种常见的应用形式,通过利用Matlab这一强大的数学计算及可视化工具,可以有效地对地表高程数据进行处理和分析。本文以广东工业大学计算机学院网络工程专业的学生实验报告为案例,详细记录了数字信号处理实验的过程,主要内容包括地表高程图的三维可视化处理、梯度计算以及着陆安全区评估。 三维可视化技术是数字信号处理中的一个重要应用。通过对地表高程图进行三维渲染,可以更直观地展示出地形的起伏情况。实验报告中,将二维像素点转化为三维空间中的坐标点,实现了地表高程数据的三维显示。这一过程涉及了图像处理的基本技巧,如图像的读取、像素亮度值的转换、以及三维坐标的生成和渲染。在Matlab环境下,使用了如surf、imagesc等函数对地表高程数据进行可视化,以便于研究人员对地形有一个直观的认识。 梯度计算是数字信号处理的重要技术之一,尤其在图像处理中应用广泛。通过对高程数据计算x与y方向的一阶差分,可以得到地表的梯度信息,这有助于分析地形的陡峭程度和变化趋势。在实验中,通过Matlab的gradient函数计算了高程数据的梯度,并通过计算梯度的绝对值绘制出梯度图。利用surf函数生成的三维图直观地展现了梯度的大小和方向,进一步分析地形的起伏和倾斜情况,为后续处理提供了依据。 着陆安全区评估是地表高程数据分析的直接应用。在实验报告中,评估着陆安全程度的函数被设计出来,考虑了地表平坦程度和相连面积这两个重要因素。地表平坦程度通过计算梯度绝对值来评估,平坦地区由于梯度小而被判定为安全。相连面积则通过图像处理中的形态学操作来确定足够大的平坦区域。这一部分的工作在Matlab中通过编写自定义的evaluate_landing_zones函数完成,实现了对地表高程数据的安全评估和着陆区域的自动识别。 此外,实验报告中还详细提供了实验的代码实现和具体步骤,这对于读者复现实验内容具有极大的帮助。整体而言,该报告不仅涉及了数字信号处理的基础知识,还包含图像处理技术、地表高程数据分析的实际应用,对于对数字信号处理感兴趣的读者,尤其是网络工程专业的学生和研究人员来说,是一份难得的参考资料。
2025-06-19 17:58:28 790KB Matlab 数字信号处理 图像处理
1
操作系统实验一的主题是系统调用,主要涉及到Linux内核和软件工程实践。在这个实验中,学生需要理解如何在操作系统中实现和使用系统调用。实验的初始步骤包括使用Subversion (SVN) 从指定的URL下载EPOS(可能是Embedded POSIX Operating System)的源代码,这是一个用于学习操作系统的开源项目。在实验环境中,使用Notepad++和命令行工具进行代码编辑和编译。 EPOS源代码包含了不同类型的文件,如`.h`头文件,`.c`C语言源文件,以及`.S`汇编语言文件。运行`make run`命令会在命令行环境下编译并执行代码,启动QEMU虚拟机来测试和展示实验结果。在实验过程中,如果遇到错误,可以通过`make debug`启动Bochs Enhanced Debugger进行调试。调试涉及查看汇编代码,因为C语言编写的高级代码会被编译成汇编指令执行。 实验的核心部分是实现一个新的系统调用,例如获取当前时间。在Kernel space(内核空间)中,需要在`machdep.c`中编写系统调用函数`sys_time()`,返回自启动以来的总时间。同时,要在`kernel.h`中声明这个函数,并在`syscall-nr.h`中定义系统调用号。在`machdep.c`的`syscall`函数中,根据系统调用号添加分支处理`sys_time`。 在User space(用户空间)中,需要在`syscall-wrapper.S`中添加汇编语言接口`WRAPPER(time)`,并在`syscall.h`中提供C语言的接口`time_t time(time_t *loc)`。在`main.c`中实际调用这个系统调用,通过`time(NULL)`或`time(pointer)`来获取当前时间,并通过`printf`打印出来。 实验完成后,可以使用`make clean`命令删除`.o`目标文件,保持工作区整洁。再次运行`make run`,会在QEMU中看到预期的输出,即当前的时间戳。 这个实验旨在让学生熟悉操作系统内核级别的编程,理解系统调用的实现过程,以及如何在用户态和内核态之间交互。通过实际操作,学生可以学习到版本控制、C语言编程、汇编语言接口、调试技巧,以及如何在虚拟环境中测试和验证操作系统组件。这个实验是操作系统课程的重要组成部分,有助于深入理解操作系统的基本原理和功能。
2025-06-19 17:21:11 740KB 重大软院
1
### 操作系统实验——线程的调度 #### 实验背景及目标 本次实验旨在通过实践操作,使学生深入了解操作系统中的线程调度机制,特别是优先级调度策略。通过一系列的步骤,包括修改现有代码来实现线程的静态优先级与动态优先级,并基于此设计并实现一种优先级调度算法。实验完成后,学生应能够掌握以下知识点: 1. **线程优先级的基本概念**:了解线程优先级的概念及其分类。 2. **静态优先级与动态优先级的区别**:理解两种优先级的不同之处以及它们是如何影响线程调度的。 3. **优先级调度算法的设计与实现**:学会如何设计并实现一个简单的优先级调度算法。 #### 实验内容详解 1. **静态优先级 (nice)**:静态优先级是指为线程设置的一个初始优先级值,它通常不会随着时间或线程的行为而改变。除非通过特定的系统调用如 `setpriority` 进行手动调整。在这个实验中,我们将通过以下几个步骤实现静态优先级: - 在 `struct tcb` 结构体中添加一个新的成员变量 `nice`,代表线程的静态优先级。 - 初始化新创建的线程时,默认将 `nice` 设置为0。 - 提供系统调用 `sys_getpriority` 和 `sys_setpriority` 来获取和设置线程的静态优先级。 2. **动态优先级 (priority)**:动态优先级是系统根据线程的使用情况(例如CPU使用时间)和当前系统负荷自动计算出的优先级。为了实现动态优先级的计算,我们需要执行以下操作: - 在 `struct tcb` 结构体中增加两个新成员变量:`estcpu` 和 `priority`。 - `estcpu` 记录线程最近使用的CPU时间量。 - `priority` 代表线程的动态优先级,其计算公式为:`priority = PRI_USER_MAX - (estcpu / 4) - (nice * 2)`,其中 `PRI_USER_MAX` 定义了最高可能的用户线程优先级,`estcpu` 是线程最近使用的CPU时间量,`nice` 是线程的静态优先级。 - 动态优先级的计算需要考虑系统当前的平均负荷,因此引入全局变量 `g_load_avg` 来跟踪系统的平均负荷。 3. **全局变量 `g_load_avg`**:这个变量用于存储系统的平均负荷。系统负荷会影响线程的动态优先级计算,因此我们定期更新这个值。具体的实现方法如下: - 在定时器中断处理程序中更新 `g_load_avg`。 - 每秒更新一次 `g_load_avg` 的值,公式为:`g_load_avg = (59/60) * g_load_avg + (1/60) * nready`,其中 `nready` 表示处于就绪状态的线程数量。 4. **优先级调度算法的实现**:在完成以上准备工作后,我们可以修改 `schedule` 函数以实现优先级调度算法。具体步骤如下: - 在 `schedule` 函数中计算每个线程的动态优先级 `priority`。 - 根据优先级选择下一个要执行的线程。 - 特别需要注意的是,`task0`(即线程0)是一个特殊线程,只有在没有其他可运行线程的情况下才会被调度执行。 5. **测试与验证**:最后一步是测试实现的调度算法是否正确工作。可以通过编写测试脚本或使用现有的测试框架来验证线程调度的行为是否符合预期。 #### 实验环境 - **编译器**:GCC - **链接器**:LD - **调试器**:GDB - **模拟器**:QEMU #### 实验步骤总结 1. **添加静态优先级字段**:在 `struct tcb` 中添加 `nice` 字段,并初始化。 2. **增加系统调用**:实现 `sys_getpriority` 和 `sys_setpriority` 以获取和设置线程的静态优先级。 3. **增加动态优先级相关字段**:在 `struct tcb` 中添加 `estcpu` 和 `priority` 字段。 4. **实现全局变量 `g_load_avg`**:用于跟踪系统的平均负荷。 5. **计算属性**:在定时器中断处理函数中计算 `g_load_avg` 和线程的 `estcpu`。 6. **修改调度函数**:在 `schedule` 函数中实现优先级调度算法。 7. **测试调度器**:编写测试脚本来验证调度算法的正确性。 通过以上步骤的学习与实践,学生不仅能够深入了解线程调度机制,还能掌握如何在实际操作系统中实现这些机制。这对于未来从事操作系统开发或研究的学生来说是非常宝贵的实践经验。
2025-06-19 17:09:52 1.15MB 操作系统
1
在数电实验二中,我们将深入探讨数字电子技术中的几个关键元件及其应用。这个实验主要涉及74LS138三线至八线译码器的功能测试,利用74LS138构建同相脉冲分配器,以及CC4511锁存器的测试与共阴极数码管的译码显示。 我们来看74LS138三线至八线译码器。这是一个常用的数字逻辑芯片,其主要任务是根据输入的三位二进制信号(A2, A1, A0)来解码出八个不同的输出线之一。当输入为有效低电平时,对应的输出线变为高电平。通过测试不同的输入组合,我们可以验证74LS138的正确工作情况,确保所有可能的输出状态都能按照预定规则切换。 接下来,我们利用74LS138来构建一个同相脉冲分配器。同相脉冲分配器的功能是将一个输入脉冲按照特定的顺序分配到多个输出端。在74LS138中,我们可以通过选择性地激活输出线,实现脉冲的有序分发。这在系统时序控制或者脉冲分配等场合有广泛应用。 然后是CC4511锁存器的测试。CC4511是一款集成了两个D型数据锁存器的芯片,它用于存储数据并在特定时钟信号的上升沿或下降沿进行数据切换。在实验中,我们需要通过输入数据和时钟信号来验证其数据保持和切换的特性,确保数据能在正确的时刻被稳定存储。 我们将CC4511与共阴极数码管结合,实现数字的译码显示。共阴极数码管是指其七个段a至g的阴极是公共的,当某段的阳极接高电平时,对应的段亮起。CC4511的输出可以驱动数码管的段驱动,通过编程控制CC4511的输出,就能显示0-9的任意数字。在这个过程中,我们需要理解数码管的显示原理,掌握如何将二进制或十进制数据转换成对应的段码,以及如何通过CC4511来驱动数码管。 通过这个实验,学生不仅可以掌握这些基础元件的工作原理,还能提升数字电路设计和故障排查的能力。同时,实验2的文件资源可以帮助我们更深入地理解和实践这些概念,通过实际操作来巩固理论知识,这对于学习数字电子技术至关重要。
2025-06-19 14:47:35 495KB 功能测试
1
MIPS(Microprocessor without Interlocked Pipeline Stages)CPU设计是计算机组成原理教学中一个重要的实验环节,尤其在高校的计算机科学与技术专业中。这一设计通常涉及多个方面,包括指令集架构的理解、流水线的实现、寄存器的管理以及硬件与软件的协同工作。本压缩包文件提供了与MIPS CPU设计相关的头歌实验答案,这些答案能够帮助学生更好地理解MIPS CPU的内部工作机制以及如何进行相关的计算机组成原理实验。 在处理这类实验时,学生需要对MIPS架构的各个组件有深入的了解。例如,MIPS架构的指令集非常规范和简洁,其中包含了算术逻辑单元(ALU)、控制单元(CU)、寄存器堆、缓存、浮点单元等关键部件。学生在实验过程中不仅需要掌握这些部件的功能和设计原理,还需要理解它们是如何协同工作的。 对于流水线技术的实现,MIPS CPU设计需要考虑如何处理指令的执行阶段,包括取指令(IF)、译码(ID)、执行(EX)、访存(MEM)和写回(WB)五个阶段。每个阶段都有其独特的功能,而设计流水线的目的就是为了提高CPU的处理速度,让一条指令的各个阶段可以并行进行。在这个过程中,硬件可能会遇到数据冲突、控制冲突和结构冲突等问题,需要通过特定的技术来解决这些问题,以确保CPU可以高效且正确地执行指令。 在实验答案中,学生可以找到如何处理这些冲突的策略和方法。例如,可以使用数据前递技术来解决数据冲突,使用分支预测技术来减少控制冲突带来的影响,或者通过优化编译器和指令集来减少结构冲突。这些问题的解决对于理解计算机体系结构和CPU设计的优化至关重要。 此外,寄存器的管理也是MIPS CPU设计中的一个重要方面。MIPS架构拥有大量的寄存器,学生需要了解如何高效地使用这些寄存器,以及如何在指令中正确地引用这些寄存器。正确的寄存器管理能够显著提高程序的运行效率。 在软件层面,学生还需要熟悉MIPS汇编语言,因为这是与MIPS CPU交互的基础。通过编写汇编程序,学生可以实现对CPU基本操作的控制,包括算术逻辑运算、数据传送、控制流程管理等。在这个过程中,学生不仅能够加深对MIPS指令集的理解,还能够提高他们的编程能力和逻辑思维能力。 MIPS CPU设计实验及其答案是理解计算机组成原理的一个桥梁,它不仅要求学生掌握理论知识,还需要他们具备一定的动手实践能力。通过对这些实验的学习,学生能够获得宝贵的实践经验,为未来在计算机科学领域的研究和开发工作打下坚实的基础。
2025-06-19 11:18:30 151KB 计算机组成原理
1
计算机网络实验是学习计算机网络的重要环节,它通过模拟或真实的环境让学习者亲手操作,以加深对网络原理的理解和实际应用技能的掌握。本实验主要围绕“三层交换机端口配置”这一主题展开,旨在让学生熟悉三层交换机的路由功能,并能够实际配置以实现网络间的通信。 三层交换机在计算机网络中的角色至关重要,它不仅具备二层交换机的快速数据转发能力,还能执行IP路由功能,从而连接不同网络段,实现不同子网之间的通信。在实验中,我们需要开启三层交换机的路由功能,这是实现网络间路由的关键步骤。这通常包括启用交换机的路由进程,以及设置全局路由表等。 接着,配置三层交换机端口的路由功能意味着我们要指定特定端口作为路由器接口,用于连接不同的网络。这可能涉及到设置端口的IP地址、子网掩码,以及开启端口的路由功能。例如,我们可以将S3760的某个端口配置为192.168.5.1/24,使得这个端口能够处理和转发该子网的数据包。 实验验证阶段,我们通过PC1和PC3进行测试。在PC1上设置IP地址为192.168.5.2/24,并尝试ping 192.168.5.1,如果成功,说明三层交换机的配置正确,PC1可以通过交换机与同一子网内的192.168.5.1通信。同样的,将PC3的IP地址也设为192.168.5.2/24,再次ping 192.168.5.1,如果依然能通,则证明三层交换机的路由功能已经实现,可以处理不同PC间的通信请求。 此外,查看接口状态信息是确保配置成功的重要步骤,它能帮助我们确认端口是否处于活动状态,以及相应的IP地址和子网掩码是否正确设置。在Cisco Packet Tracer中,我们可以通过命令行界面(CLI)查询这些信息。 通过本次实验,学生王世成不仅了解了三层交换机的基本功能,还掌握了如何配置和验证其路由功能。尽管在操作过程中存在不熟练的情况,但多次尝试后的成功意味着他已经在实践中深化了对网络路由原理的理解。Packet Tracer作为一款强大的网络实验仿真软件,为理论学习提供了实践平台,让学生在没有实际硬件的情况下也能进行网络配置和故障排查,大大提高了学习效率。 总结来说,计算机网络实验是理论学习与实践操作相结合的重要方式,它有助于巩固理论知识,提高问题解决能力,而三层交换机的端口配置实验则是网络通信教学中的基础实践之一。通过这样的实验,学生可以更直观地理解网络设备的工作原理,为未来从事网络相关工作打下坚实的基础。
2025-06-19 10:24:33 134KB 计算机网络实验
1
HTML实验小米商城首页是一个以网页开发为主题的项目,主要涉及HTML、CSS和JavaScript这三种核心技术。在本实验中,我们将深入探讨如何使用这些技术来构建一个类似小米商城的网站首页。 HTML(HyperText Markup Language)是网页的基础,它定义了页面的结构。在创建小米商城首页时,HTML将用于构建网页的基本元素,如标题、段落、链接、图像和列表等。例如,`
`元素可以用来创建头部区域,`
1
在电子工程领域中,二极管整流是将交流电(AC)转换为直流电(DC)的重要过程。二极管作为一种半导体器件,具有单向导电的特性,即只允许电流一个方向通过。在二极管整流电路中,二极管的作用就是利用其单向导电性,将交流电的负半周期“切除”,从而得到脉动的直流电。 根据二极管的连接方式和电路的工作原理,二极管整流可以分为半波整流和全波整流两种基本类型。半波整流电路只利用交流输入电压的一个半周期,当输入电压为正时,二极管导通,电流流过负载;当输入电压为负时,二极管截止,电路中没有电流流过。因此,半波整流输出的直流电脉动较大,含有较多的交流成分。半波整流电路简单、成本低,但效率不高,一般适用于要求不高或作为前置电路的场合。 全波整流电路则能够利用交流电的整个周期,通过特定的电路设计,当交流输入电压正半周期时,一组二极管导通,而负半周期时,另一组二极管导通,这样就可以在负载两端获得正向的脉动直流电。全波整流电路相较于半波整流电路,输出的直流电更加平滑,纹波系数小,效率更高。常见的全波整流电路有桥式整流电路和中心抽头整流电路。 在进行二极管整流的multisim电路仿真实验时,工程师可以利用Multisim软件的虚拟电子工作平台,搭建模拟电路并进行仿真测试。Multisim软件能够提供丰富的元器件库和仿真分析工具,使工程师能够在没有实际搭建电路的情况下,对电路的性能进行预先的分析和预测。在模拟过程中,工程师可以直观地观察到电路中电压和电流的变化情况,分析不同整流方式对输出直流电波形的影响,以及验证电路设计的正确性。 在实验的过程中,工程师还需要关注二极管的特性参数,如最大反向电压、正向电流承受能力等,因为这些参数直接关系到电路能否正常工作以及工作时的可靠性。此外,工程师还需考虑电路的滤波设计,以进一步改善输出直流电的品质,减小脉动直流中的交流成分,使其更加接近理想的直流电。 二极管整流电路的仿真实验不仅能够加深对二极管整流原理的理解,而且能够通过Multisim软件的辅助,提升电路设计和仿真的技能,为实际电路的搭建和应用打下坚实的基础。
2025-06-18 22:32:38 126KB 半波整流 全波整流
1
在《单片机原理与应用》这门课程中,实验三着重探讨了定时/计数器和中断系统在单片机中的综合应用。这个实验旨在帮助学生深入理解单片机如何利用这两个核心功能来实现复杂的控制任务。接下来,我们将详细讨论相关知识点。 一、单片机基础 单片机是一种集成电路,集成了CPU、内存、输入输出接口等组件,用于控制各种设备和系统。在本实验中,我们使用的可能是如8051、AVR或ARM系列的单片机,它们都有内置的定时/计数器和中断系统。 二、定时/计数器工作原理 定时/计数器是单片机中重要的硬件资源,可以执行定时或计数任务。定时器通常基于内部时钟脉冲,每隔一定时间产生一个中断请求,用于触发特定操作。计数器则对外部事件(如脉冲)进行计数,达到预设值时同样会触发中断。 1. 工作模式:定时器/计数器通常有多种工作模式,如正常模式、溢出模式、波特率发生器模式等,这些模式的选择取决于具体应用需求。 2. 预置值设置:预置值决定了定时或计数的时间周期或次数,通常通过寄存器设置。 3. 中断服务程序:当定时/计数器达到预设值时,会产生中断,CPU暂停当前任务,执行中断服务程序。 三、中断系统 中断是单片机处理突发事件的重要机制。当外部设备或内部硬件模块发出中断请求时,CPU暂停当前任务,转而执行中断服务程序,处理完后再返回原任务。 1. 中断源:单片机中的中断源包括定时器/计数器溢出、外部输入引脚、串行通信等。 2. 中断优先级:不同中断源可能有不同的优先级,高级中断可以打断低级中断的处理。 3. 中断向量:每个中断都有一个地址,称为中断向量,它指向中断服务程序的入口地址。 4. 中断请求与响应:中断请求发生后,经过一定的处理,如中断使能检查、禁止当前指令执行等,CPU才会响应中断并跳转到中断服务程序。 四、实验内容与步骤 在实验三中,学生可能需要完成以下任务: 1. 配置定时器,设定合适的预置值,实现定时功能。 2. 配置中断,处理定时器溢出中断,实现计数功能。 3. 设计中断服务程序,实现特定的控制逻辑,如LED灯闪烁、蜂鸣器鸣叫等。 4. 编程并调试,验证定时和中断功能的正确性。 五、实验收获 通过这个实验,学生不仅能掌握定时/计数器和中断的基本操作,还能提升动手能力和问题解决能力。此外,理解中断在实时系统中的重要性,对于后续的嵌入式系统设计和应用开发具有重要意义。 "定时计数+中断综合控制实验"是单片机学习中的关键实践环节,它将理论知识与实际操作相结合,为学生提供了深入了解和运用单片机功能的机会。在实验过程中,学生应充分理解和熟练运用定时/计数器的设置、中断处理流程以及中断服务程序的设计,这对于后续的单片机项目开发具有指导价值。
2025-06-18 20:17:33 15.2MB 单片机实验
1