为解决电机在变负载运行条件下滚动轴承振动信号故障的特征提取困难、故障诊断准确率低的问题,提出一种基于变步长粒子群的变分模态分解与贝叶斯网络相结合的滚动轴承故障诊断模型。通过变步长粒子群算法优化的变分模态分解与Hilbert变换,提取故障信息并离散化处理,构建贝叶斯网络故障诊断模型,对滚动轴承故障发生概率推理,并利用完备、不完备数据集以及噪声试验验证该方法的准确性。仿真结果表明,该方法能高效提取特征信息,实现对不确定信息的推理估计,提高滚动轴承故障诊断的准确率,在滚动轴承的故障诊断预测中具有较好的理论与应用前景。
1
信号预处理——零均值化 在测试中由数据采集所得的原始信号,在分析前需要进行预处理,以提高数据的可靠性和真实性,并检查信号的随机性,以便正确地选择分析处理方法。本设计中,我们采用零均值化处理。 零均值化处理又称中心化处理。信号的均值相当于一个直流分量,而直流信号的傅里叶变换是在 处的冲激函数,因此若不去除均值,在作信号谱分析时,将在 处出现一个大的谱峰,并会影响在 左右处的频谱曲线,使它产生较大的误差。 设采样数据为 (n=1,2,…,N),其均值通过下式计算: 用下式进行零均值化处理: 处理后, 就变为一个均值为零的新信号 (n=1,2,…,N)。
2021-11-22 15:17:42 2.79MB 故障诊断
1
介绍了RBF神经网络的模型及原理,阐述了滚动轴承故障的机理;通过滚动轴承的故障特征数据,构建的RBF神经网络,实现了轴承的智能故障诊断。
2021-11-18 09:38:01 356KB RBF神经网络 故障诊断 滚动轴承
1
本程序能够实现滚动轴承的故障诊断和在线检测,用到了峭度值计算、小波变换、自相关计算等
1
局部均值分解(Local Mean Decomposition,简称LMD)方法是一种新的自适应时频分析方法,并成功运用于滚动轴承故障诊断中,但对噪声比较敏感。为消除噪声对诊断结果的影响,提出了一种小波包降噪与LMD相结合的滚动轴承故障诊断方法。该方法首先利用小波包去除信号中的噪声,然后,进行LMD分解,并将分解后PF分量与分解前信号的相关系数作为判断标准,剔除多余低频PF分量,最后,选取有效PF集进行功率谱分析,提取故障特征。通过仿真数据和真实滚动轴承数据的故障诊断实验,其结果验证了该方法的有效性。
2021-11-16 20:24:12 307KB 工程技术 论文
1
针对包络分析中带宽和中心频率依靠经验估计的缺陷,应用一种快速峭度图算法自动为包络谱分析提供最佳带宽和中心频率。快速峭度图算法借鉴了二进小波分解算法,先将原始信号经过FIR滤波器将信号进行分解,然后在各个频段上计算信号的谱峭度值,并根据快速峭度图的结果得到最佳中心频率和带宽,最后进行包络谱分析。实验证明该方法可以更有效地诊断滚动轴承故障。
2021-11-11 10:26:11 370KB 谱峭度 快速峭度图 包络谱 滚动轴承
1
基于机器学习的航天器滚动轴承故障诊断分析.pdf
2021-09-25 17:02:24 1.28MB 机器学习 参考文献 专业指导
提出了一种改进的集总平均经验模式分解(MEEMD)滚动轴承的故障提取方法。对采集得到的振动信号进行MEEMD分解,获得不同频率的本征模式函数(IMF);对各个本征模式函数进行包络谱分析;最后通过包络谱特性反映出来的频谱信息诊断出轴承故障。滚动轴承内外圈故障仿真和实验研究表明:MEEMD方法能有效地应用于轴承的故障诊断。
2021-09-10 10:12:11 274KB MEEMD 包络谱 滚动轴承 故障诊断
1
eager 能量算子能够估计产生信号所需的总机械能, 对信号的瞬态变化具有良好的时间分辨率和自适应能力, 在检测信号冲击特征方面具有独特优势。为了提取滚动轴承故障的特征频率, 针对滚动轴承故障振动信号中的瞬态冲击特点, 提出了基于 Teager 能量算子的频谱分析方法, 利用 Teager 能量算子提取轴承故障引起的周期性冲击, 通过瞬时 Teager 能量的 Fourier 频谱识别轴承的故障特征频率。
2021-08-25 19:28:02 1.05MB teager
1
本资源为复现论文《基于PSO_VMD_MCKD方法的风机轴承微弱故障诊断》的配套资源,利用包络谱作为优化算法的目标函数,同时还可以根据包络谱画图,该函数里面调用了求频谱的函数,下载地址如下:https://download.csdn.net/download/weixin_45317919/13455237,PinPu.m(信号的时频转换)