1、资源内容:基于Matlab实现自适应RBF神经网络观测器设计与滑模控制(源码).rar 2、适用人群:计算机,电子信息工程、数学等专业的学习者,作为“参考资料”参考学习使用。 3、解压说明:本资源需要电脑端使用WinRAR、7zip等解压工具进行解压,没有解压工具的自行百度下载即可。 4、免责声明:本资源作为“参考资料”而不是“定制需求”,代码只能作为参考,不能完全复制照搬。不一定能够满足所有人的需求,需要有一定的基础能够看懂代码,能够自行调试代码并解决报错,能够自行添加功能修改代码。由于作者大厂工作较忙,不提供答疑服务,如不存在资源缺失问题概不负责,谢谢理解。
2025-05-20 09:25:36 27KB 神经网络 matlab
1
1.项目基于 MNIST 数据集,使用 VGG-19 网络模型,将图像进行风格迁移,实现去噪功能。 2.项目运行环境:Python 和 TensorFlow 运行环境。需要 Python 3.6 及以上配置,使用conda安装环境 conda create -n tensorflow python=3.8.10 3.项目包括 3 个模块:图片处理、模型构造、迭代更新。项目用到的网络模型为预训练好的VGG-19,使用过程中抛弃最后三个全连接层,取出前面各层的参数,构建网络结构。损失函数,由内容损失、风格损失构成。内容损失采用 L2范数损失,风格损失用 Gram 矩阵计算各通道的相关性,以便更好的捕捉笔触、纹理等细节信息,利用 adam 梯度下降算法进行优化。 4.准确率评估:对于图像风格迁移这种模糊算法,并没有客观的评判标准。损失函数可以反映出一部分情况,更多的是人为观察运行结果。经测试,经过 40 次迭代风格迁移已很明显,可根据自身需求,合理调节迭代次数。
2025-05-19 13:15:43 522.16MB tensorflow 深度学习 机器学习 人工智能
1
LSTM 长短期记忆 序列数据分类 神经网络 深度学习
2025-05-18 19:44:16 3.6MB lstm 长短期记忆 深度学习 神经网络
1
标题 "MNIST用神经网络实现" 涉及的核心知识点主要集中在使用TensorFlow构建神经网络模型来处理手写数字识别任务。MNIST数据集是机器学习领域的经典基准,包含60,000个训练样本和10,000个测试样本,每个样本都是28x28像素的灰度图像,代表0到9的手写数字。 **1. TensorFlow框架** TensorFlow是由Google开发的一个开源库,用于数值计算和大规模机器学习。它通过数据流图进行计算,其中节点表示数学操作,而边则表示在这些操作之间流动的多维数据数组(张量)。在MNIST任务中,TensorFlow被用来定义神经网络的结构、训练过程以及预测。 **2. 神经网络** 神经网络是一种模仿人脑神经元结构的计算模型,由多个层次的节点(神经元)组成。在这个例子中,神经网络通常包含输入层、隐藏层和输出层。输入层接收MNIST图像的像素值,隐藏层进行特征提取,输出层则通过激活函数(如softmax)将结果转化为0到1之间的概率分布,代表每个数字的可能性。 **3. MNIST数据预处理** 在实际应用中,通常需要对MNIST数据进行预处理,包括将图像像素归一化到0到1之间,以及将标签进行one-hot编码,即将10个数字类别转换为10维向量,只有一个元素为1,其他为0。 **4. 构建模型** 在`mnist_train.py`中,会定义模型的结构,可能包括一个或多个全连接层(Dense)和激活函数(如ReLU),以及一个输出层。损失函数通常选用交叉熵(cross-entropy),优化器可能选择随机梯度下降(SGD)或Adam,以最小化损失函数。 **5. 训练与验证** 描述中提到的“训练和验证不能同时运行”可能是由于模型的训练循环和验证循环没有正确分离,或者资源管理不善导致的。正常的流程是在每个训练周期后,对验证集进行一次评估,以检查模型是否过拟合。 **6. `mnist_eval.py`** 这个文件通常包含模型的评估逻辑,比如计算模型在测试集上的准确率,以便了解模型的泛化能力。 **7. `mnist_inference.py`** 此文件可能涉及模型的推理部分,即如何使用已经训练好的模型对新的未知数据进行预测。这可能包括加载模型权重、读取新图像、预处理图像,然后通过模型进行预测。 **8. `data`** 这个文件夹可能包含了MNIST数据集的下载和预处理代码,通常包括训练集和测试集的图片数据以及对应的标签。 以上是MNIST手写数字识别任务中涉及到的关键技术和概念。解决描述中的问题可能需要调整训练和验证的并行执行逻辑,确保两个过程能够和谐共存,不影响模型的训练效果。对于初学者来说,这个项目是一个很好的实践平台,可以深入理解TensorFlow和神经网络的基础知识。
2025-05-18 15:46:38 11.06MB tensorflow MNIST
1
内容概要:本文介绍了基于卷积长短期记忆神经网络(CNN-LSTM)的时间序列预测模型的设计与实现。该模型融合了CNN强大的特征提取能力和LSTM对于时间序列的预测优势,适用于处理具有时序特性的多维数据。项目通过多种性能评估指标以及用户友好的GUI界面来增强其实用性和准确性。 适用人群:对时间序列预测感兴趣的初学者及有一定深度学习基础的研发人员。 使用场景及目标:主要应用于金融市场预测、销量预测、气象数据分析和生产环境监控等领域,帮助用户理解时间序列的特性,提高模型预测精度。 其他说明:项目实现了完整的模型构建、训练与评估流程,同时也强调了数据预处理的重要性,为后续的研究提供了参考。此外,还提出了几个可能的改进方向,比如引入注意力机制等高级技术以增加模型复杂性和适应性。
2025-05-17 14:12:44 37KB 时间序列预测 深度学习 MATLAB GUI设计
1
YOLOv2(You Only Look Once version 2)是一种基于深度学习的实时目标检测系统,由Joseph Redmon和Ali Farhadi等人在2016年提出。它在YOLO(第一代)的基础上进行了改进,提高了检测精度并减少了计算量,从而在保持速度的同时提升了性能。这个压缩包包含的是YOLOv2在608*608分辨率下的预训练权重文件(yolov2.weights)和配置文件(yolov2.cfg),这两个文件对于理解和应用YOLOv2模型至关重要。 我们来详细解析YOLOv2的核心特点: 1. **多尺度预测**:YOLOv2引入了多尺度预测,通过在不同尺度上进行预测,提高了对小目标检测的准确性。它采用了一个名为"feature pyramid network"(特征金字塔网络)的结构,能够处理不同大小的目标。 2. **Batch Normalization**:在YOLOv2中,几乎所有的卷积层都采用了批量归一化,这有助于加速训练过程,提高模型的稳定性和收敛速度。 3. **Anchor Boxes**:YOLOv2使用预先定义的 anchor boxes(锚框)来覆盖多种目标的尺寸和宽高比,这些锚框与真实边界框进行匹配,从而提高了检测精度。 4. **Skip Connections**:YOLOv2借鉴了ResNet的残差学习框架,引入了跳跃连接,使得低层特征可以直接传递到高层,保留了更多的细节信息,提高了定位的准确性。 5. **Fine-tuning**:预训练权重文件(yolov2.weights)是在大量图像数据集如ImageNet上训练得到的,可以作为基础模型,通过微调适应特定任务的数据集。 配置文件(yolov2.cfg)是YOLOv2模型结构的描述,包含了网络的层定义、超参数设置等信息。例如,网络的深度、每个卷积层的过滤器数量、池化层的大小、激活函数的选择等都会在这个文件中指定。用户可以根据自己的需求调整这些参数,进行模型的定制。 使用这个预训练权重文件和配置文件,开发者或研究人员可以快速部署YOLOv2模型进行目标检测任务,或者进一步在自己的数据集上进行迁移学习,以优化模型性能。对于初学者来说,这是一个很好的起点,因为可以直接利用已有的模型进行实践,而无需从头开始训练。 总结来说,YOLOv2是一个高效且精确的目标检测框架,广泛应用于自动驾驶、视频监控、图像分析等领域。这个压缩包中的预训练权重和配置文件为理解和应用YOLOv2提供了便利,是深度学习和机器视觉领域的重要资源。通过学习和实践,我们可以深入理解目标检测技术,并掌握如何利用深度学习解决实际问题。
2025-05-16 13:21:10 180.48MB 神经网络 机器学习 机器视觉 深度学习
1
BP神经网络,全称为Backpropagation Neural Network,是人工神经网络的一种典型模型,因其在误差反向传播过程中更新权重而得名。它在预测领域的应用广泛,尤其在非线性回归和时间序列预测中表现出色。本项目提供的"BP神经网络的预测Matlab程序"是一个实践教程,旨在帮助用户理解并运用BP神经网络进行数据预测。 我们来讨论一下普通BP神经网络。这种网络通常由输入层、隐藏层和输出层组成。输入层接收原始数据,隐藏层负责学习和提取特征,输出层则根据学习到的模式进行预测。BP算法通过不断迭代调整神经元之间的连接权重,使得网络的预测结果逐渐接近训练数据的目标值。 在Matlab中实现BP神经网络,通常会涉及到以下步骤: 1. **数据预处理**:对输入数据进行归一化处理,以确保各输入特征在同一尺度上,同时可能需要将目标变量转化为适合网络处理的形式。 2. **网络结构设定**:确定输入节点、隐藏节点和输出节点的数量。这通常需要根据问题的复杂性和数据特性来决定。 3. **初始化权重**:随机分配初始权重值,这是BP网络学习的基础。 4. **前向传播**:根据当前权重,计算每个神经元的激活值,从输入层传递到输出层。 5. **误差计算**:比较预测输出与实际目标,计算误差。 6. **反向传播**:根据误差,按照链式法则更新权重,这一过程是BP算法的核心。 7. **循环迭代**:重复上述步骤,直到网络达到预设的收敛标准,如误差阈值或迭代次数。 接下来,我们要关注的是双隐含层BP神经网络。相比于单隐含层,双隐含层网络能捕获更复杂的非线性关系,增强了模型的表达能力。在Matlab程序中,第二个网络的结构可能如下: 1. **输入层**:同样接收原始数据。 2. **第一个隐含层**:学习和提取第一层次的特征。 3. **第二个隐含层**:进一步提取更高级别的特征,增强模型的抽象能力。 4. **输出层**:进行预测。 在"基于双隐含层BP神经网络的预测.rar"文件中,很可能包含了详细的代码示例,解释了如何配置和训练这种网络。`README.md`文件则可能提供了关于如何运行程序、理解结果以及可能遇到的问题和解决方案的指导。 这个项目为学习者提供了一个实用的平台,通过Matlab实践BP神经网络的预测功能,加深对预测模型的理解,特别是双隐含层网络在复杂预测任务中的应用。无论是对于初学者还是有经验的开发者,都能从中受益,提升在预测分析领域的能力。
2025-05-16 10:01:25 49KB
1
内容概要:本文介绍了如何使用 MATLAB 和鲸鱼优化算法(WOA)优化卷积神经网络(CNN),以实现多变量时间序列的精确预测。文章详细描述了数据处理、WOA算法的设计与实现、CNN模型的构建与训练、模型评估与结果可视化等各个环节的具体步骤。同时,提供了完整的程序代码和详细的注释说明。 适合人群:具备一定的 MATLAB 编程基础,对时间序列预测、深度学习及优化算法感兴趣的科研人员和工程师。 使用场景及目标:主要用于金融预测、能源调度、气象预报、制造业和交通流量预测等领域,旨在通过优化的 CNN 模型提高预测的准确性和鲁棒性。 其他说明:文章还探讨了项目的背景、目标与挑战,以及未来可能的改进方向。通过实验结果展示了模型的有效性和优越性。
2025-05-15 22:27:04 50KB DeepLearning
1
本文详细介绍了一个使用MATLAB实现鲸鱼优化算法(WOA)优化卷积神经网络(CNN)来进行多输入单输出回归预测的研究项目。首先介绍了该项目的基本概况以及相关的理论背景,并展示了具体程序的运行流程和每个关键步骤的技术细节。该项目实现了对CNN模型超参数的优化,从而显著提高了回归预测的效果,并附带提供了一系列定量评估方法。最后,还探讨了未来可能的发展方向和完善的地方。 适用人群:有一定深度学习和优化算法基础知识的研发人员或研究人员。 使用场景及目标:针对复杂或大量特征输入而需要精准的单变量输出预测任务,例如金融时间序列分析,气象数据分析等领域。 推荐指南:由于涉及机器学习的基础理论及其算法的应用,对于初学者来说应当首先对CNN和WOA有一定的理解和认识后再开始尝试本项目实践。同时,深入学习相关资料有助于更好的完成实际操作。
2025-05-15 21:30:28 38KB 回归预测 MATLAB
1
内容概要:本文介绍了如何使用MATLAB实现鲸鱼优化算法(WOA)与卷积神经网络(CNN)结合,以优化卷积神经网络的权重和结构,从而提高多输入单输出回归预测任务的准确性。项目通过WOA优化CNN模型中的权重参数,解决传统训练方法易陷入局部最优解的问题,适用于光伏功率预测、房价预测、天气预报等领域。文章详细描述了项目背景、目标、挑战、创新点及其应用领域,并提供了模型架构和部分代码示例,包括数据预处理、WOA优化、CNN模型构建、模型训练与评估等环节。; 适合人群:对机器学习、深度学习有一定了解的研究人员和工程师,特别是关注优化算法与深度学习结合的应用开发人员。; 使用场景及目标:①解决高维复杂输入特征的多输入单输出回归预测任务;②通过WOA优化CNN的超参数和权重,提高模型的泛化能力和预测准确性;③应用于光伏功率预测、股票价格预测、房价预测、环境污染预测、医疗数据分析、智能交通系统、天气预测和能源需求预测等多个领域。; 阅读建议:由于本文涉及较多的技术细节和代码实现,建议读者先理解WOA和CNN的基本原理,再逐步深入到具体的模型设计和优化过程。同时,结合提供的代码示例进行实践操作,有助于更好地掌握相关技术和方法。
1