基于MNIST样式的自动编码器 (AAE)模型,可在高斯分布多元变量上对MNIST图像的样式信息进行编码。 这里使用的模型是从在第4所讨论的一个(监督对抗性自动编码)略有不同。 在本文中,仅解码器具有指示数字的标签。 鉴于此,我们还为编码器提供了标签。 路线图 简单的自动编码器 可视化潜在特征空间(样式空间)的脚本。 对抗式自动编码器,可将样式空间调整为高斯分布。 一个脚本,用于从随机样式矢量生成所有数字的图像。 设置 $ python3 -m venv pyenv $ source pyenv/bin/activate $ pip3 install -r requirements.txt 用法 $ ./mnist-sae.py --help usage: mnist-sae.py [-h] [--batch-size B] [--epochs E] [--lr LR]
2022-03-31 14:23:13 10KB Python
1
将堆栈自动编码器(SAE)与极限学习机(ELM)联合,建立了深度神经网络预测模型(SAE-ELM)。利用苹果高光谱图像提取出的光谱数据,对深度神经网络的权值和阈值进行了初始化和微调。与传统ELM模型预测结果相比,SAE-ELM的预测集决定系数和残留预测偏差分别从0.7345和1.968提升至0.7703和2.116,预测集方均根误差从1.6297降至1.2837。研究结果表明:深度学习网络SAE-ELM模型的预测性能优于传统的ELM模型,将其用于预测苹果硬度是可行的。
2022-03-30 09:37:35 4.19MB 光谱学 高光谱成 硬度 堆栈自动
1
主要介绍了keras自动编码器实现系列之卷积自动编码器操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2022-03-29 21:14:31 57KB keras 卷积 自动编码器
1
基于自动编码器的通信系统 基于研究论文的基于AutoEncoder的通信系统的实现和结果:“物理层深度学习简介” 此回购协议有效地实现了基于自动编码器的通信系统,摘自Tim O'Shea和Jakob Hoydis撰写的研究论文“物理层深度学习入门”。在我的无线通信实验室课程中,我从事该研究论文并重新本研究论文的结果。 基于深度学习的通信系统的概念是新的,并且具有基于深度学习的通信的许多优点。本文提供了与许多其他论文完全不同的方法,并尝试在物理层引入深度学习。 研究论文摘要 我们提出并讨论了物理层深度学习的几种新颖应用。 通过将通信系统解释为自动编码器,我们开发了一种将通信系统设计视为端到端重构任务的基本新方法,该任务旨在在单个过程中共同优化发射器和接收器组件。 我们将展示如何将该思想扩展到多个发射机和接收机的网络,并提出无线电变压器网络的概念,作为将专家领域知识纳入机器学习模型的一种手
2022-03-28 02:23:25 109KB 系统开源
1
该代码适合于根据其他属性的升序或降序来进行自动编码,操作简单
2022-03-25 21:49:19 80KB arcgis属性表利用pytho
1
量子自动编码器:经典量子(变分)自动编码器的实现
2022-03-22 18:40:30 942KB quantum-computing autoencoders JupyterNotebook
1
Deep_auto_encoders 深度自动编码器的 Python 实现
2022-03-11 17:00:10 55KB Python
1
从高光谱数据中学习 此处提供的代码基于我编写的用于完成练习的代码,可在此处找到。 一旦实现并测试了解决方案,我便扩展了自动编码器和softmax分类器,以处理高光谱数据。 但是,当前的解决方案并不优于现有技术。 上图显示了基本事实 上图显示了分类结果。 上图显示了隐藏层的可视化 上面的这些图显示了两个光谱带。
2022-03-10 10:35:32 39.18MB MATLAB
1
此预测性维护示例根据来自工业机器的正常操作数据训练深度学习自动编码器。 该示例演练: -使用Diagnostic Feature Designer应用程序从工业振动时间序列数据中提取相关特征- 设置和训练基于 LSTM 的自动编码器来检测异常行为- 评估结果 设置: 该演示是作为 MATLAB:registered: 项目实现的,需要您打开该项目才能运行它。 该项目将管理您需要的所有路径和快捷方式。 跑步: - 打开 MATLAB 项目 AnomalyDetection.prj - 运行第 1 部分 - 数据准备和特征提取- 运行第 2 部分 - 建模
2022-03-06 11:08:52 64.18MB matlab
1
集群编码器 尝试在论文《法》中提出的GraphEncodersF.Tian,B.Gao,Q.Cui,E.Chen和T.-Y. Liu,“学习图聚类的深度表示法”,在AAAI中,2014年,第1293-1299页。 使用
2022-02-27 18:21:49 53KB JupyterNotebook
1