基于Matlab的泰勒图绘制指南:自定义点大小和颜色,多种配色可选,整合相关系数、中心均方根误差和标准差评价模型性能,泰勒图 Matlab代码 案例详细提供2套泰勒图画法:原始数据的泰勒图与对数据标准化后的泰勒图 笔者对此泰勒图代码进行了详细的注释,可实现点的大小和颜色的自定义设置,提供多种配色,可根据爱好自行设置喜欢的款式 ----------------------------- 泰勒图本质上是巧妙的将模型的相关系数(correlation coefficient)、中心均方根误差(centered root-mean-square)和标准差(standard Deviation)三个评价指标整合在一张极坐标图上,其基于的便是三者之间构成的余弦关系。 ,泰勒图;Matlab代码;原始数据;数据标准化;配色;极坐标图;评价指标;余弦关系,基于Matlab的泰勒图绘制教程:原始与标准化数据的对比分析
2025-06-09 22:11:30 664KB
1
有趣的是这些部件都可以用于桌面应用,HTML页面,和整个Windows脚本环境。 在第十二章中我们将详细讨论 它们。 快捷方式正确的命名 在Shell的4.71版本以后,一个称之为SHGetNewLinkInfo()的新函数对程序员是可用的。然而与你所希望的不同, 这个函数不能建立快捷方式。相反,它的用途在于为快捷方式安排一个正确的名字: BOOL SHGetNewLinkInfo(LPCTSTR pszLinkTo, LPCTSTR pszDir, LPTSTR pszName, BOOL* pfMustCopy, UINT uFlags); 这个函数接受路径名的指针或者目标对象的PIDL,这个参数存储在pszLinkTo之中。uFlags值指明它是PIDL还是路径 名。目标文件夹是pszDir。 这个例程将给出正在建立的快捷方式文件的名字。这个名字由pszName参量返回,并假设其缓冲长度为MAX_PATH 字符数。当你对已经存在的快捷方式建立快捷方式时,Shell并不建立新的连接,而是,简单地拷贝和修改这个目 标。pfMustCopy就用于这个目的,它返回一个布尔值来表示Shell是建立了一个快捷方式文件还是处理了一个拷 贝,TRUE表示pszLinkTo是一个已存在的快捷方式,此时Shell只拷贝和适当地修改它,FALSE则是建立一个全新的快 捷方式。 后的可用标志是: 标志 描述 SHGNLI_PIDL 如果设置,pszLinkTo变量将作为PIDL而不是串来考虑 SHGNLI_NOUNIQUE 如果设置,Shell将首先确定快捷方式的名字,而后检查可能的 冲突,如果名字与同文件夹中的另一个发生冲突,就重复操作, 直到找出唯一的名字为止。
2025-06-09 18:18:52 25.12MB Shell
1
Yolov7训练自己的数据集(超详细教程)对应python源码,将数据集随机按比例分为训练集、验证集和测试集。并生成yolo系列训练时需要的.txt文件。适用于yolo全系列
2025-06-09 13:31:45 4KB yolo
1
vivado2021.1安装教程 想要深入了解 FPGA 开发,却不知道从哪里开始?Vivado 2021.1 是你开启硬件设计旅程的强大工具!但对于新手来说,安装和配置可能会有些挑战。本篇教程将手把手带你完成 Vivado 2021.1 的下载、安装、免费激活和配置,全程详解,不漏任何细节。无论你是学生、工程师,还是 FPGA 爱好者,都能轻松上手,开启你的设计之旅!
2025-06-08 22:15:37 15KB 课程资源
1
内容概要:本文详细介绍了如何使用MATLAB构建磁悬浮轴承的基础模型及其仿真。首先,通过简化的电磁力公式和MATLAB代码实现了径向磁悬浮轴承的电磁力计算。接着,建立了动力学方程并使用ode45函数进行仿真,展示了磁悬浮轴承在外力干扰下的行为。随后,引入了PID控制器用于闭环控制,确保系统的稳定性和响应速度。文中还讨论了状态空间模型的应用,强调了非线性项的处理方法,并提供了Simulink模型的具体实现步骤。最后,分享了调试经验和常见问题解决技巧,帮助读者掌握磁悬浮轴承仿真的核心技术。 适合人群:对磁悬浮技术和MATLAB仿真感兴趣的工程技术人员、研究人员及高校学生。 使用场景及目标:① 学习磁悬浮轴承的工作原理和建模方法;② 掌握MATLAB在控制系统仿真中的应用;③ 提高PID控制器的设计和调试能力。 其他说明:本文不仅提供理论推导和代码实现,还分享了许多实践经验,有助于读者快速入门并在实践中不断改进和创新。
2025-06-06 13:12:31 329KB
1
ANSYS LS-DYNA: 快速建模与高效损伤模拟的台阶爆破模型教程 详细涵盖视频教程内容、建模思路与操作优化,轻松掌握LS-DYNA中台阶爆破模型的快速修改技巧,精确进行模型堵塞与炸药设置,快速调整云图后处理操作,以及有效输出损伤体积与时程曲线数据。,ANSYS LS-DYNA台阶爆破模型快速建模及损伤模拟教程的课程说明 1.视频介绍了台阶爆破模型的建模思路及操作。 2.介绍如何快速修改(不需要重新建模划分网格)台阶爆破模型的堵塞长度、炸药长度、空气间隔装药方式、不耦合系数、孔排间距、孔间孔内延期时间等。 3.详细的后处理操作,如何去调整云图,输出损伤体积,输出时程曲线数据。 ,关键词:ANSYS LS-DYNA;台阶爆破模型;快速建模;损伤模拟;建模思路;操作;修改;堵塞长度;炸药长度;空气间隔装药;不耦合系数;孔排间距;孔间孔内延期时间;后处理操作;云图调整;损伤体积输出;时程曲线数据输出,"ANSYS LS-DYNA爆破模型快速建模与损伤模拟教程"
2025-06-05 16:14:42 5.91MB safari
1
导入数据比较:方法1,需要每次重新编译程序从而下载数据;方法2,需要人工导入数据,方法3就比较直接,将生成的二进制文件放在.out文件同一目录就可以了,很方便。 CCS中的操控SPI来读写SPI的EEPROM:方法一,就是配置MCBSP的模式为SPI模式,通过API接口来操作SPI。方法二,是将MCBSP的0通道DX0,DR0,CLKX0为IO口,来模拟SPI口来操作EEPROM 相应的工具在http://download.csdn.net/source/2444232 《TMS320VC5509A的SPI启动详解及工具应用》 TMS320VC5509A是一款高性能的数字信号处理器,其SPI(Serial Peripheral Interface)启动模式对于开发者来说至关重要。本文将深入探讨如何启动该芯片的SPI模式,并介绍相关的工具和方法。 设置启动模式是启动过程的关键步骤。为了从24位地址的AT25F512B 512KB EEPROM引导程序,需要通过配置GPIO引脚来选择启动方式。具体来说,需设置GPIO.0=0, GPIO.3=0, GPIO.2=0, GPIO.1=1,这将指示DSP从SPI EEPROM读取启动信息。 接下来,外部SPI芯片与MCBSP(Multi-Channel Buffered Serial Port)0通道的连接也十分关键。DX0用于发送数据,DR0接收数据,CLKX0提供时钟,而GPIO4作为片选信号。确保这些接口正确连接是保证SPI通信的基础。 在引导过程中,0~0000200H Bytes的空间用于系统引导,因此应用程序必须预留这部分区域。引导表是通过HEX55.EXE工具生成的,该工具位于CCS(Code Composer Studio)安装目录下,其生成的文件格式分为数据块(BLOCK TYPE = 6)和结束标识(BLOCK TYPE = 9)。数据块包含程序入口地址等信息,这些信息经过校验后写入SPI EEPROM。 将引导表写入SPI EEPROM有多种方法。一种是将HEX55.EXE生成的引导表转换为CCS头文件,然后将数据写入SPI。另一种方法是导入数据,将引导表转换为CCS可导入格式。还可以通过CCS的文件操作功能直接从外部文件读取并写入SPI。每种方法都有其优缺点,例如,第一种方法需要每次重新编译,而第三种方法则更为便捷。 在CCS中,控制SPI与SPI EEPROM的交互有两种常见方法。一是配置MCBSP工作在SPI模式,通过API接口进行操作。二是将MCBSP的0通道DX0, DR0, CLKX0设为GPIO口,以模拟SPI接口直接操作EEPROM。这两种方法可以根据实际需求灵活选用。 总结起来,TMS320VC5509A的SPI启动涉及硬件配置、引导表的生成与写入、以及软件控制等多个环节。理解并掌握这些知识对于开发基于该芯片的系统至关重要。同时,自举加载表(Bootloader)的概念也被提及,它是应用代码从外部存储器迁移到片内高速存储器执行的关键,包含了代码段、目标地址、入口地址等重要信息。通过本文的详细讲解,读者应能更好地理解和实施TMS320VC5509A的SPI启动流程。
2025-06-05 11:02:27 370KB 5509 SPI BOOT
1
HA 概述 1)所谓 HA(high available),即高可用(7*24 小时不中断服务)。 2)实现高可用最关键的策略是消除单点故障。HA 严格来说应该分成各个组件的 HA 机制: HDFS 的 HA 和 YARN 的 HA。 3)Hadoop2.0 之前,在 HDFS 集群中 NameNode 存在单点故障(SPOF)。 4)NameNode 主要在以下两个方面影响 HDFS 集群 NameNode 机器发生意外,如宕机,集群将无法使用,直到管理员重启 NameNode 机器需要升级,包括软件、硬件升级,此时集群也将无法使用 HDFS HA 功能通过配置 Active/Standby 两个 nameNodes 实现在集群中对 NameNode 的 热备来解决上述问题。如果出现故障,如机器崩溃或机器需要升级维护,这时可通过此种方 式将 NameNode 很快的切换到另外一台机器。 HDFS-HA 工作机制 1)通过双 namenode 消除单点故障
2025-06-04 03:46:53 18KB hdfs 日志文件 zookeeper linux
1
根据提供的文件信息,我们可以推断出这是一段关于IT领域,特别是Android开发的学习资源推荐。虽然实际链接无法在此处打开验证,但从标题“最新黑马视频”、描述以及标签来看,这段视频应该包含了丰富的Android开发实战案例和技术讲解。下面将根据这些信息展开相关知识点。 ### Android开发基础 1. **开发环境搭建**:进行Android应用开发前,首先需要配置好开发环境。这通常包括安装Java Development Kit (JDK)、Android Studio集成开发环境(IDE)以及Android SDK。JDK提供Java语言的基础库和支持;Android Studio是官方推荐的开发工具,内置了强大的编辑器、调试工具等功能;Android SDK则包含了一组API和工具,用于创建、调试和部署Android应用。 2. **UI设计**:用户界面(User Interface, UI)设计是Android开发的重要组成部分。Android提供了丰富的布局(Layout)选项来构建界面,如LinearLayout、RelativeLayout等。此外,Material Design是一套由Google提出的界面设计风格指南,它强调视觉效果的一致性、简洁性和互动性,对于提升用户体验至关重要。 3. **数据存储**:Android应用可以通过多种方式存储数据,包括SharedPreferences、SQLite数据库、文件系统和网络存储等。其中,SharedPreferences适用于轻量级的数据存储;SQLite则是一种轻型的关系型数据库管理系统,适合存储结构化数据;而对于大量或非结构化的数据,则可以通过网络服务来进行存储与访问。 ### Android开发进阶技术 1. **网络编程**:在移动互联网时代,几乎所有的应用程序都需要通过网络与其他服务器进行交互。Android平台支持HTTP/HTTPS协议,并且可以使用诸如Volley、Retrofit等流行的开源库简化网络请求处理过程。掌握网络编程不仅能够帮助开发者更好地理解数据传输机制,还能提高应用的功能性和实用性。 2. **多线程与异步处理**:为了保证用户体验流畅,避免UI卡顿现象出现,在进行耗时操作(如网络请求、大数据处理等)时应采用多线程或多进程的方式。Android提供了Handler、AsyncTask等多种机制来实现后台任务处理,并确保UI主线程不被阻塞。 3. **性能优化**:随着应用功能日益复杂,如何保持良好的性能表现成为了一个挑战。性能优化涉及内存管理、代码效率等方面。例如,通过减少不必要的对象创建、合理使用缓存机制等方式可以有效降低内存占用;而利用Profiler工具定位并解决性能瓶颈问题也是开发过程中不可或缺的技能之一。 ### 实战案例分析 从标签中提到的“最新案例”推测,该视频可能包含了一些基于当前技术栈的实际项目示例。通过学习这些案例,不仅可以加深对理论知识的理解,还能够在实践中遇到并解决问题,从而提高自己的技术水平。比如: - **电商平台应用开发**:这类项目通常涉及商品列表展示、购物车管理、支付功能等多个模块。在实现过程中需要注意用户体验的设计、安全性考虑等问题。 - **社交类应用**:此类应用重点在于消息传递机制的设计、好友关系管理等,同时也需要考虑到隐私保护措施。 “最新黑马视频”所涵盖的内容非常广泛,既包含了Android开发的基础概念介绍,也有进阶技巧讲解以及具体项目的实践指导。对于希望深入学习Android开发的同学来说,这样的资源是非常宝贵的。当然,除了观看视频学习外,动手实践也是非常重要的环节,只有通过不断尝试和实践,才能真正掌握所学知识并在实际工作中运用自如。
1
内容概要:本文档详细介绍了基于SABO-VMD-SVM的轴承故障诊断项目,旨在通过融合自适应块优化(SABO)、变分模式分解(VMD)和支持向量机(SVM)三种技术,构建一个高效、准确的故障诊断系统。项目背景强调了轴承故障诊断的重要性,特别是在现代制造业和能源产业中。文档详细描述了项目的目标、面临的挑战、创新点以及具体实施步骤,包括信号采集与预处理、VMD信号分解、SABO优化VMD参数、特征提取与选择、SVM分类和最终的故障诊断输出。此外,文档还展示了模型性能对比的效果预测图,并提供了部分MATLAB代码示例。 适合人群:具备一定编程基础,特别是对MATLAB有一定了解的研发人员或工程师,以及从事机械设备维护和故障诊断工作的技术人员。 使用场景及目标:①适用于需要对机械设备进行实时监测和故障预测的场景,如制造业、能源行业、交通运输、航天航空等;②目标是提高故障诊断的准确性,减少设备停机时间,降低维修成本,确保生产过程的安全性和稳定性。 阅读建议:由于项目涉及多步骤的技术实现和算法优化,建议读者在学习过程中结合理论知识与实际代码,逐步理解和实践每个环节,同时关注模型性能优化和实际应用场景的适配。
2025-06-02 14:49:27 36KB MATLAB VMD 轴承故障诊断
1